These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 30450508)

  • 1. Single-layer graphene-coated gold chip for electrochemical surface plasmon resonance study.
    Mei Y; Zhong C; Li L; Nong J; Wei W; Hu W
    Anal Bioanal Chem; 2019 Jul; 411(19):4577-4585. PubMed ID: 30450508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A label-free ultrasensitive microfluidic surface Plasmon resonance biosensor for Aflatoxin B
    Bhardwaj H; Sumana G; Marquette CA
    Food Chem; 2020 Mar; 307():125530. PubMed ID: 31639579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical Surface Plasmon Resonance Spectroscopy at Bilayered Silver/Gold Films.
    Zhai P; Guo J; Xiang J; Zhou F
    J Phys Chem C Nanomater Interfaces; 2007 Jan; 111(2):981-986. PubMed ID: 21949559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene oxide and dextran capped gold nanoparticles based surface plasmon resonance sensor for sensitive detection of concanavalin A.
    Huang CF; Yao GH; Liang RP; Qiu JD
    Biosens Bioelectron; 2013 Dec; 50():305-10. PubMed ID: 23876541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated dual-modality microfluidic sensor for biomarker detection using lithographic plasmonic crystal.
    Ali MA; Tabassum S; Wang Q; Wang Y; Kumar R; Dong L
    Lab Chip; 2018 Feb; 18(5):803-817. PubMed ID: 29431801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface characterization and efficiency of a matrix-free and flat carboxylated gold sensor chip for surface plasmon resonance (SPR).
    Roussille L; Brotons G; Ballut L; Louarn G; Ausserré D; Ricard-Blum S
    Anal Bioanal Chem; 2011 Sep; 401(5):1601-17. PubMed ID: 21755270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic study on the sensitivity enhancement in graphene plasmonic sensors based on layer-by-layer self-assembled graphene oxide multilayers and their reduced analogues.
    Chung K; Rani A; Lee JE; Kim JE; Kim Y; Yang H; Kim SO; Kim D; Kim DH
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):144-51. PubMed ID: 25555067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of film growth of tellurium by electrochemical deposition in the presence and absence of cadmium ions.
    Ku JR; Vidu R; Stroeve P
    J Phys Chem B; 2005 Nov; 109(46):21779-87. PubMed ID: 16853829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of the gold/silica thin film interface: electrochemical and surface plasmon resonance studies.
    Szunerits S; Coffinier Y; Janel S; Boukherroub R
    Langmuir; 2006 Dec; 22(25):10716-22. PubMed ID: 17129051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carboxyl-functionalized graphene oxide composites as SPR biosensors with enhanced sensitivity for immunoaffinity detection.
    Chiu NF; Fan SY; Yang CD; Huang TY
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):370-376. PubMed ID: 27396822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene oxide-based SPR biosensor chip for immunoassay applications.
    Chiu NF; Huang TY; Lai HC; Liu KC
    Nanoscale Res Lett; 2014; 9(1):445. PubMed ID: 25232298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triggering blue-red transition response in polydiacetylene vesicles: an electrochemical surface plasmon resonance method.
    Kew SJ; Hall EA
    Analyst; 2007 Aug; 132(8):801-10. PubMed ID: 17646880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Long-Range Surface Plasmon Resonance for ABO Blood Typing.
    Tangkawsakul W; Srikhirin T; Shinbo K; Kato K; Kaneko F; Baba A
    Int J Anal Chem; 2016; 2016():1432781. PubMed ID: 28101104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced sensitivity of self-assembled-monolayer-based SPR immunosensor for detection of benzaldehyde using a single-step multi-sandwich immunoassay.
    Gobi KV; Matsumoto K; Toko K; Ikezaki H; Miura N
    Anal Bioanal Chem; 2007 Apr; 387(8):2727-35. PubMed ID: 17318518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable and sensitive silver surface plasmon resonance imaging sensor using trilayered metallic structures.
    Wang Z; Cheng Z; Singh V; Zheng Z; Wang Y; Li S; Song L; Zhu J
    Anal Chem; 2014 Feb; 86(3):1430-6. PubMed ID: 24372308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ surface plasmon resonance measurements of self-assembled monolayers of ferrocenylalkylthiols under constant potentials.
    Uematsu T; Kuwabata S
    Anal Sci; 2008 Mar; 24(3):307-12. PubMed ID: 18332535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bimetallic chips for a surface plasmon resonance instrument.
    Chen Y; Zheng RS; Zhang DG; Lu YH; Wang P; Ming H; Luo ZF; Kan Q
    Appl Opt; 2011 Jan; 50(3):387-91. PubMed ID: 21263739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A sensitive SPR biosensor based on hollow gold nanospheres and improved sandwich assay with PDA-Ag@Fe
    Li S; Wu Q; Ma P; Zhang Y; Song D; Wang X; Sun Y
    Talanta; 2018 Apr; 180():156-161. PubMed ID: 29332794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Au nanoparticle-enhanced surface plasmon resonance sensing of biocatalytic transformations.
    Zayats M; Pogorelova SP; Kharitonov AB; Lioubashevski O; Katz E; Willner I
    Chemistry; 2003 Dec; 9(24):6108-14. PubMed ID: 14679522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Au Nanofilm-Graphene/D-Type Fiber Surface Plasmon Resonance Sensor for Highly Sensitive Specificity Bioanalysis.
    Xi X; Xu J; Li S; Song J; Yang W; Sun Y; Jiang S; Han Y; Fan X
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32059555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.