These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 30450509)
1. Molecular analysis of semen-like odor emitted by chestnut flowers using neutral desorption extractive atmospheric pressure chemical ionization mass spectrometry. Zhang X; Ji Y; Zhang Y; Liu F; Chen H; Liu J; Handberg ES; Chagovets VV; Chingin K Anal Bioanal Chem; 2019 Jul; 411(18):4103-4112. PubMed ID: 30450509 [TBL] [Abstract][Full Text] [Related]
2. Deciphering the chemical origin of the semen-like floral scents in three angiosperm plants. Zhang X; Chingin K; Zhong D; Luo L; Frankevich V; Chen H Phytochemistry; 2018 Jan; 145():137-145. PubMed ID: 29127940 [TBL] [Abstract][Full Text] [Related]
3. Semen-Like Floral Scents and Pollination Biology of a Sapromyophilous Plant Stemona japonica (Stemonaceae). Chen G; Jürgens A; Shao L; Liu Y; Sun W; Xia C J Chem Ecol; 2015 Mar; 41(3):244-52. PubMed ID: 25835570 [TBL] [Abstract][Full Text] [Related]
4. Floral volatiles identification and molecular differentiation of Osmanthus fragrans by neutral desorption extractive atmospheric pressure chemical ionization mass spectrometry. Zhang X; Liu J; Wang Y; Chingin K; Hua R; Zhu L; Rahman MM; Frankevich V; Chen H Rapid Commun Mass Spectrom; 2019 Dec; 33(24):1861-1869. PubMed ID: 31414500 [TBL] [Abstract][Full Text] [Related]
5. An assessment of detection canine alerts using flowers that release methyl benzoate, the cocaine odorant, and an evaluation of their behavior in terms of the VOCs produced. Cerreta MM; Furton KG Forensic Sci Int; 2015 Jun; 251():107-14. PubMed ID: 25898183 [TBL] [Abstract][Full Text] [Related]
6. Comparison of Biochemical Constituents and Contents in Floral Nectar of Kim YK; Lee S; Song JH; Kim MJ; Yunusbaev U; Lee ML; Kim MS; Kwon HW Molecules; 2020 Sep; 25(18):. PubMed ID: 32942597 [TBL] [Abstract][Full Text] [Related]
7. Comparison of two common adsorption materials for thermal desorption gas chromatography - mass spectrometry of biogenic volatile organic compounds. Marcillo A; Jakimovska V; Widdig A; Birkemeyer C J Chromatogr A; 2017 Sep; 1514():16-28. PubMed ID: 28765001 [TBL] [Abstract][Full Text] [Related]
8. Discrimination of Swiss cheese from 5 different factories by high impact volatile organic compound profiles determined by odor activity value using selected ion flow tube mass spectrometry and odor threshold. Taylor K; Wick C; Castada H; Kent K; Harper WJ J Food Sci; 2013 Oct; 78(10):C1509-C1515. PubMed ID: 24106758 [TBL] [Abstract][Full Text] [Related]
9. Use of thermal desorption gas chromatography-olfactometry/mass spectrometry for the comparison of identified and unidentified odor active compounds emitted from building products containing linseed oil. Clausen PA; Knudsen HN; Larsen K; Kofoed-Sørensen V; Wolkoff P; Wilkins CK J Chromatogr A; 2008 Nov; 1210(2):203-11. PubMed ID: 18922536 [TBL] [Abstract][Full Text] [Related]
10. Aroma Profile of Rubus ulmifolius Flowers and Fruits During Different Ontogenetic Phases. Bandeira Reidel RV; Melai B; Cioni P; Flamini G; Pistelli L Chem Biodivers; 2016 Dec; 13(12):1776-1784. PubMed ID: 27449284 [TBL] [Abstract][Full Text] [Related]
11. Sampling the Body Odor of Primates: Cotton Swabs Sample Semivolatiles Rather Than Volatiles. Birkemeyer CS; Thomsen R; Jänig S; Kücklich M; Slama A; Weiß BM; Widdig A Chem Senses; 2016 Jul; 41(6):525-35. PubMed ID: 27121043 [TBL] [Abstract][Full Text] [Related]
12. Assessing the volatile profile of carob tree (Ceratonia siliqua L.). Krokou A; Stylianou M; Agapiou A Environ Sci Pollut Res Int; 2019 Dec; 26(35):35365-35374. PubMed ID: 30919189 [TBL] [Abstract][Full Text] [Related]
13. Characterization of odorous industrial plumes by coupling fast and slow mass spectrometry techniques for volatile organic compounds. Liu WT; Liao WC; Griffith SM; Chang CC; Wu YC; Wang CH; Wang JL Chemosphere; 2022 Oct; 304():135304. PubMed ID: 35697108 [TBL] [Abstract][Full Text] [Related]
14. Evolution and diversity of floral scent chemistry in the euglossine bee-pollinated orchid genus Gongora. Hetherington-Rauth MC; Ramírez SR Ann Bot; 2016 Jul; 118(1):135-48. PubMed ID: 27240855 [TBL] [Abstract][Full Text] [Related]
15. Characterization of Volatile Compounds in Four Different Qian CY; Quan WX; Xiang ZM; Li CC Molecules; 2019 Sep; 24(18):. PubMed ID: 31547401 [TBL] [Abstract][Full Text] [Related]
16. Volatile organic compounds of Thai honeys produced from several floral sources by different honey bee species. Pattamayutanon P; Angeli S; Thakeow P; Abraham J; Disayathanoowat T; Chantawannakul P PLoS One; 2017; 12(2):e0172099. PubMed ID: 28192487 [TBL] [Abstract][Full Text] [Related]
17. The relationship between chemical concentration and odor activity value explains the inconsistency in making a comprehensive surrogate scent training tool representative of illicit drugs. Rice S; Koziel JA Forensic Sci Int; 2015 Dec; 257():257-270. PubMed ID: 26427020 [TBL] [Abstract][Full Text] [Related]
18. Improved quantification of livestock associated odorous volatile organic compounds in a standard flow-through system using solid-phase microextraction and gas chromatography-mass spectrometry. Yang X; Zhu W; Koziel JA; Cai L; Jenks WS; Laor Y; Leeuwen JH; Hoff SJ J Chromatogr A; 2015 Oct; 1414():31-40. PubMed ID: 26456221 [TBL] [Abstract][Full Text] [Related]
19. GC-MS Composition and Olfactory Profile of Concretes from the Flowers of Four Popova V; Ivanova T; Stoyanova A; Nikolova V; Hristeva T; Zheljazkov VD Molecules; 2020 Jun; 25(11):. PubMed ID: 32512824 [TBL] [Abstract][Full Text] [Related]