These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 30450761)

  • 41. Carrier characteristics influence the kinetics of passive drug loading into lipid nanoemulsions.
    Göke K; Bunjes H
    Eur J Pharm Biopharm; 2018 May; 126():132-139. PubMed ID: 28807819
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of major parameters of nanoparticles on their physical and chemical properties and recent application of nanodrug delivery system in targeted chemotherapy.
    Zhang J; Tang H; Liu Z; Chen B
    Int J Nanomedicine; 2017; 12():8483-8493. PubMed ID: 29238188
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tumor-targeting, pH-responsive, and stable unimolecular micelles as drug nanocarriers for targeted cancer therapy.
    Yang X; Grailer JJ; Pilla S; Steeber DA; Gong S
    Bioconjug Chem; 2010 Mar; 21(3):496-504. PubMed ID: 20163170
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Protein-lipid nanohybrids as emerging platforms for drug and gene delivery: Challenges and outcomes.
    Gaber M; Medhat W; Hany M; Saher N; Fang JY; Elzoghby A
    J Control Release; 2017 May; 254():75-91. PubMed ID: 28365294
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oligo(lactic acid)n-Paclitaxel Prodrugs for Poly(ethylene glycol)-block-poly(lactic acid) Micelles: Loading, Release, and Backbiting Conversion for Anticancer Activity.
    Tam YT; Gao J; Kwon GS
    J Am Chem Soc; 2016 Jul; 138(28):8674-7. PubMed ID: 27374999
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Self-assembly of cholesterol end-capped polymer micelles for controlled drug delivery.
    Gao M; Yang Y; Bergfel A; Huang L; Zheng L; Bowden TM
    J Nanobiotechnology; 2020 Jan; 18(1):13. PubMed ID: 31941501
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Food Protein Based Core-Shell Nanocarriers for Oral Drug Delivery: Effect of Shell Composition on in Vitro and in Vivo Functional Performance of Zein Nanocarriers.
    Alqahtani MS; Islam MS; Podaralla S; Kaushik RS; Reineke J; Woyengo T; Perumal O
    Mol Pharm; 2017 Mar; 14(3):757-769. PubMed ID: 28103046
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Advance of DNA and CCPs-based nanocarriers in drug delivery systems.
    Wu Y; Yao X; Chen Y; Li Y; Tian W
    Biomed Mater Eng; 2017; 28(s1):S255-S261. PubMed ID: 28372302
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors.
    Din FU; Aman W; Ullah I; Qureshi OS; Mustapha O; Shafique S; Zeb A
    Int J Nanomedicine; 2017; 12():7291-7309. PubMed ID: 29042776
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Polymer Self-Assembled Nanostructures as Innovative Drug Nanocarrier Platforms.
    Pippa N; Pispas S; Demetzos C
    Curr Pharm Des; 2016; 22(19):2788-95. PubMed ID: 26898736
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The acceptability of nanocarriers for drug delivery in different contexts of use: perceptions of researchers and research trainees in the field of new technologies.
    Chenel V; Boissy P; Poirier MS; Cloarec JP; Patenaude J
    Int J Nanomedicine; 2015; 10():2125-37; quiz 2138-9. PubMed ID: 25844040
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multifunctional nanocarriers.
    Torchilin VP
    Adv Drug Deliv Rev; 2006 Dec; 58(14):1532-55. PubMed ID: 17092599
    [TBL] [Abstract][Full Text] [Related]  

  • 53. More than Just Size: Challenges and Opportunities of Hybrid Dendritic Nanocarriers.
    Rimondino GN; Oksdath-Mansilla G; Brunetti V; Strumia MC
    Curr Pharm Des; 2017; 23(21):3142-3153. PubMed ID: 28403793
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Calcium phosphate nanocarriers for drug delivery to tumors: imaging, therapy and theranostics.
    Huang D; He B; Mi P
    Biomater Sci; 2019 Oct; 7(10):3942-3960. PubMed ID: 31414096
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An Update on Biomedical Application of Nanotechnology for Alzheimer's Disease Diagnosis and Therapy.
    Panahi Y; Mohammadhosseini M; Abadi AJ; Akbarzadeh A; Mellatyar H
    Drug Res (Stuttg); 2016 Nov; 66(11):580-586. PubMed ID: 27701713
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Controlled co-delivery nanocarriers based on mixed micelles formed from cyclodextrin-conjugated and cross-linked copolymers.
    Li S; He Q; Chen T; Wu W; Lang K; Li ZM; Li J
    Colloids Surf B Biointerfaces; 2014 Nov; 123():486-92. PubMed ID: 25311963
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin.
    Zhao J; Wang H; Liu J; Deng L; Liu J; Dong A; Zhang J
    Biomacromolecules; 2013 Nov; 14(11):3973-84. PubMed ID: 24107101
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lipid nanocarriers: influence of lipids on product development and pharmacokinetics.
    Pathak K; Keshri L; Shah M
    Crit Rev Ther Drug Carrier Syst; 2011; 28(4):357-93. PubMed ID: 21967401
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Advances in nanocarriers as drug delivery systems in Chagas disease.
    Quijia Quezada C; Azevedo CS; Charneau S; Santana JM; Chorilli M; Carneiro MB; Bastos IMD
    Int J Nanomedicine; 2019; 14():6407-6424. PubMed ID: 31496694
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Preparation and tumor cell model based biobehavioral evaluation of the nanocarrier system using partially reduced graphene oxide functionalized by surfactant.
    Wang Y; Liu K; Luo Z; Duan Y
    Int J Nanomedicine; 2015; 10():4605-20. PubMed ID: 26229464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.