These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 30450841)

  • 1. Microbially influenced formation of Neoarchean ooids.
    Flannery DT; Allwood AC; Hodyss R; Summons RE; Tuite M; Walter MR; Williford KH
    Geobiology; 2019 Mar; 17(2):151-160. PubMed ID: 30450841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbonate ooids of the Mesoarchaean Pongola Supergroup, South Africa.
    Siahi M; Hofmann A; Master S; Mueller CW; Gerdes A
    Geobiology; 2017 Nov; 15(6):750-766. PubMed ID: 28737010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic-rich bimineralic ooids record biological processes in Shark Bay, Western Australia.
    Ramey-Lariviere JYF; Gong J; Baldes MJ; Chatterjee N; Bosak T; Pruss SB
    Geobiology; 2023 Sep; 21(5):629-643. PubMed ID: 37226324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular biosignatures reveal common benthic microbial sources of organic matter in ooids and grapestones from Pigeon Cay, The Bahamas.
    O'Reilly SS; Mariotti G; Winter AR; Newman SA; Matys ED; McDermott F; Pruss SB; Bosak T; Summons RE; Klepac-Ceraj V
    Geobiology; 2017 Jan; 15(1):112-130. PubMed ID: 27378151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbonate deposition during the late Proterozoic Era: an example from Spitsbergen.
    Knoll AH; Swett K
    Am J Sci; 1990; 290-A():104-32. PubMed ID: 11538689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Marine pisolites from Upper Proterozoic carbonates of East Greenland and Spitsbergen.
    Swett K; Knoll AH
    Sedimentology; 1989; 36():75-93. PubMed ID: 11542187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical modeling of ooid size and the problem of Neoproterozoic giant ooids.
    Sumner DY; Grotzinger JP
    J Sediment Petrol; 1993 Sep; 63(5):974-82. PubMed ID: 11539432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Rare Glimpse of Paleoarchean Life: Geobiology of an Exceptionally Preserved Microbial Mat Facies from the 3.4 Ga Strelley Pool Formation, Western Australia.
    Duda JP; Van Kranendonk MJ; Thiel V; Ionescu D; Strauss H; Schäfer N; Reitner J
    PLoS One; 2016; 11(1):e0147629. PubMed ID: 26807732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Formation and Distribution of Modern Ooids on Great Bahama Bank.
    Harris PM; Diaz MR; Eberli GP
    Ann Rev Mar Sci; 2019 Jan; 11():491-516. PubMed ID: 30089226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbonate facies-specific stable isotope data record climate, hydrology, and microbial communities in Great Salt Lake, UT.
    Ingalls M; Frantz CM; Snell KE; Trower EJ
    Geobiology; 2020 Sep; 18(5):566-593. PubMed ID: 32196875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa.
    Beukes NJ; Klein C; Kaufman AJ; Hayes JM
    Econ Geol; 1990; 85(4):663-90. PubMed ID: 11538478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbonate organo-mineral micro- and ultrastructures in sub-fossil stromatolites: Marion lake, South Australia.
    Perri E; Tucker ME; Spadafora A
    Geobiology; 2012 Mar; 10(2):105-17. PubMed ID: 22039973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbonate fabrics in the modern microbialites of Pavilion Lake: two suites of microfabrics that reflect variation in microbial community morphology, growth habit, and lithification.
    Theisen CH; Sumner DY; Mackey TJ; Lim DS; Brady AL; Slater GF
    Geobiology; 2015 Jul; 13(4):357-72. PubMed ID: 25809931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coastal lithofacies and biofacies associated with syndepositional dolomitization and silicification (Draken Formation, Upper Riphean, Svalbard).
    Fairchild IJ; Knoll AH; Swett K
    Precambrian Res; 1991; 53():165-97. PubMed ID: 11538645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A biofilm and organomineralisation model for the growth and limiting size of ooids.
    Batchelor MT; Burne RV; Henry BI; Li F; Paul J
    Sci Rep; 2018 Jan; 8(1):559. PubMed ID: 29323250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcified microbes in Neoproterozoic carbonates: implications for our understanding of the Proterozoic/Cambrian transition.
    Knoll AH; Fairchild IJ; Swett K
    Palaios; 1993; 8():512-25. PubMed ID: 11539428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental niches and metabolic diversity in Neoarchean lakes.
    Stüeken EE; Buick R; Anderson RE; Baross JA; Planavsky NJ; Lyons TW
    Geobiology; 2017 Nov; 15(6):767-783. PubMed ID: 28856796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks?
    Grotzinger JP; Knoll AH
    Annu Rev Earth Planet Sci; 1999; 27():313-58. PubMed ID: 11543060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An actualistic perspective into Archean worlds - (cyano-)bacterially induced sedimentary structures in the siliciclastic Nhlazatse Section, 2.9 Ga Pongola Supergroup, South Africa.
    Noffke N; Beukes N; Bower D; Hazen RM; Swift DJ
    Geobiology; 2008 Jan; 6(1):5-20. PubMed ID: 18380882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lithostratigraphic analysis of a new stromatolite-thrombolite reef from across the rise of atmospheric oxygen in the Paleoproterozoic Turee Creek Group, Western Australia.
    Barlow E; Van Kranendonk MJ; Yamaguchi KE; Ikehara M; Lepland A
    Geobiology; 2016 Jul; 14(4):317-43. PubMed ID: 26928741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.