These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 30451089)
1. Double-sides sticking mechanism of vinblastine interacting with α,β-tubulin to get activity against cancer cells. Zhou X; Xu Z; Li A; Zhang Z; Xu S J Biomol Struct Dyn; 2019 Sep; 37(15):4080-4091. PubMed ID: 30451089 [TBL] [Abstract][Full Text] [Related]
2. Theoretical insight into the structural mechanism for the binding of vinblastine with tubulin. Chi S; Xie W; Zhang J; Xu S J Biomol Struct Dyn; 2015; 33(10):2234-54. PubMed ID: 25588192 [TBL] [Abstract][Full Text] [Related]
3. Structural Basis and Mechanism for Vindoline Dimers Interacting with α,β-Tubulin. Zhang Z; Lu C; Wang P; Li A; Zhang H; Xu S ACS Omega; 2019 Jul; 4(7):11938-11948. PubMed ID: 31460305 [TBL] [Abstract][Full Text] [Related]
4. Interaction of tubulin with a new fluorescent analogue of vinblastine. Chatterjee SK; Laffray J; Patel P; Ravindra R; Qin Y; Kuehne ME; Bane SL Biochemistry; 2002 Nov; 41(47):14010-8. PubMed ID: 12437358 [TBL] [Abstract][Full Text] [Related]
5. Rational design of biaryl pharmacophore inserted noscapine derivatives as potent tubulin binding anticancer agents. Santoshi S; Manchukonda NK; Suri C; Sharma M; Sridhar B; Joseph S; Lopus M; Kantevari S; Baitharu I; Naik PK J Comput Aided Mol Des; 2015 Mar; 29(3):249-70. PubMed ID: 25481458 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and biological evaluation of vinca alkaloids and phomopsin hybrids. Ngo QA; Roussi F; Cormier A; Thoret S; Knossow M; Guénard D; Guéritte F J Med Chem; 2009 Jan; 52(1):134-42. PubMed ID: 19072542 [TBL] [Abstract][Full Text] [Related]
7. Molecular docking and pharmacogenomics of vinca alkaloids and their monomeric precursors, vindoline and catharanthine. Sertel S; Fu Y; Zu Y; Rebacz B; Konkimalla B; Plinkert PK; Krämer A; Gertsch J; Efferth T Biochem Pharmacol; 2011 Mar; 81(6):723-35. PubMed ID: 21219884 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the interaction of TZT-1027, a potent antitumor agent, with tubulin. Natsume T; Watanabe J; Tamaoki S; Fujio N; Miyasaka K; Kobayashi M Jpn J Cancer Res; 2000 Jul; 91(7):737-47. PubMed ID: 10920282 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and biological evaluation of C-13' substituted 7'-homo-anhydrovinblastine derivatives. Gherbovet O; La Spisa F; Thoret S; Alvarez MCG; Levaique H; Bignon J; Roussi F Bioorg Med Chem Lett; 2015 Apr; 25(8):1771-1773. PubMed ID: 25804719 [TBL] [Abstract][Full Text] [Related]
10. One-pot synthesis of vinca alkaloids-phomopsin hybrids. Gherbovet O; Coderch C; García Alvarez MC; Bignon J; Thoret S; Guéritte F; Gago F; Roussi F J Med Chem; 2014 Jun; 57(12):5470-6. PubMed ID: 24871162 [TBL] [Abstract][Full Text] [Related]
11. Vinblastine perturbation of tubulin protofilament structure: a computational insight. Rendine S; Pieraccini S; Sironi M Phys Chem Chem Phys; 2010 Dec; 12(47):15530-6. PubMed ID: 20978652 [TBL] [Abstract][Full Text] [Related]
12. Stathmin/Op18 is a novel mediator of vinblastine activity. Devred F; Tsvetkov PO; Barbier P; Allegro D; Horwitz SB; Makarov AA; Peyrot V FEBS Lett; 2008 Jul; 582(17):2484-8. PubMed ID: 18588888 [TBL] [Abstract][Full Text] [Related]
13. Different effects of vinblastine on the polymerization of isotypically purified tubulins from bovine brain. Khan IA; Ludueña RF Invest New Drugs; 2003 Feb; 21(1):3-13. PubMed ID: 12795525 [TBL] [Abstract][Full Text] [Related]
14. Natural organic compounds that affect to microtubule functions. Iwasaki S Yakugaku Zasshi; 1998 Apr; 118(4):112-26. PubMed ID: 9564789 [TBL] [Abstract][Full Text] [Related]
15. Synthesis, anticancer activity and molecular docking studies on a series of heterocyclic trans-cyanocombretastatin analogues as antitubulin agents. Penthala NR; Zong H; Ketkar A; Madadi NR; Janganati V; Eoff RL; Guzman ML; Crooks PA Eur J Med Chem; 2015 Mar; 92():212-20. PubMed ID: 25557492 [TBL] [Abstract][Full Text] [Related]
16. Synthesis, anti-cancer evaluation of benzenesulfonamide derivatives as potent tubulin-targeting agents. Yang J; Yang S; Zhou S; Lu D; Ji L; Li Z; Yu S; Meng X Eur J Med Chem; 2016 Oct; 122():488-496. PubMed ID: 27423028 [TBL] [Abstract][Full Text] [Related]
17. Diverse polyketides and alkaloids from Penicillium sp. KHMM: structural elucidation, biological and molecular docking studies. Hamed A; Ismail M; El-Metwally MM; Frese M; Ibrahim TMA; El-Haddad AF; Sewald N; Shaaban M Z Naturforsch C J Biosci; 2019 May; 74(5-6):131-137. PubMed ID: 30645191 [TBL] [Abstract][Full Text] [Related]
18. Novel shikonin derivatives targeting tubulin as anticancer agents. Guo J; Chen XF; Liu J; Lin HY; Han HW; Liu HC; Huang SC; Shahla BK; Kulek A; Qi JL; Wang XM; Ling LJ; Yang YH Chem Biol Drug Des; 2014 Nov; 84(5):603-15. PubMed ID: 24797889 [TBL] [Abstract][Full Text] [Related]
19. Effect of taxol on vinblastine sulfate-induced crystallization of tubulin. Ohta S; Krishan A; Nishio K; Ohmori T; Kunikane H; Inomata M; Takahashi T; Saijo N Anticancer Res; 1993; 13(4):873-7. PubMed ID: 7688938 [TBL] [Abstract][Full Text] [Related]
20. Identification of potent virtual leads and ADME prediction of isoxazolidine podophyllotoxin derivatives as topoisomerase II and tubulin inhibitors. Bkhaitan MM; Mirza AZ; Shamshad H; Ali HI J Mol Graph Model; 2017 May; 73():74-93. PubMed ID: 28242581 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]