BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30451295)

  • 1. Creation and validation of a reactor engineering model for multiphase red wine fermentations.
    Miller KV; Oberholster A; Block DE
    Biotechnol Bioeng; 2019 Apr; 116(4):781-792. PubMed ID: 30451295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A combined phenolic extraction and fermentation reactor engineering model for multiphase red wine fermentation.
    Miller KV; Noguera R; Beaver J; Oberholster A; Block DE
    Biotechnol Bioeng; 2020 Jan; 117(1):109-116. PubMed ID: 31544954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Mechanistic Model for the Extraction of Phenolics from Grapes During Red Wine Fermentation.
    Miller KV; Noguera R; Beaver J; Medina-Plaza C; Oberholster A; Block DE
    Molecules; 2019 Apr; 24(7):. PubMed ID: 30986909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic model for nitrogen-limited wine fermentations.
    Cramer AC; Vlassides S; Block DE
    Biotechnol Bioeng; 2002 Jan; 77(1):49-60. PubMed ID: 11745173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Processes and purposes of extraction of grape components during winemaking: current state and perspectives.
    Unterkofler J; Muhlack RA; Jeffery DW
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):4737-4755. PubMed ID: 32285174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of maceration temperature in red wine vinification on extraction of phenolics from berry skins and seeds of grape (Vitis vinifera).
    Koyama K; Goto-Yamamoto N; Hashizume K
    Biosci Biotechnol Biochem; 2007 Apr; 71(4):958-65. PubMed ID: 17420579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical modelling of anthocyanin mass transfer to predict extraction in simulated red wine fermentation scenarios.
    Setford PC; Jeffery DW; Grbin PR; Muhlack RA
    Food Res Int; 2019 Jul; 121():705-713. PubMed ID: 31108799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Occurrence and enological properties of two new non-conventional yeasts (Nakazawaea ishiwadae and Lodderomyces elongisporus) in wine fermentations.
    Ruiz J; Ortega N; Martín-Santamaría M; Acedo A; Marquina D; Pascual O; Rozès N; Zamora F; Santos A; Belda I
    Int J Food Microbiol; 2019 Sep; 305():108255. PubMed ID: 31252247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling kinetic expressions and metabolic networks for predicting wine fermentations.
    Pizarro F; Varela C; Martabit C; Bruno C; Pérez-Correa JR; Agosin E
    Biotechnol Bioeng; 2007 Dec; 98(5):986-98. PubMed ID: 17497743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of wine color attributes from the phenolic profiles of red grapes (Vitis vinifera).
    Jensen JS; Demiray S; Egebo M; Meyer AS
    J Agric Food Chem; 2008 Feb; 56(3):1105-15. PubMed ID: 18173238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-dependent kinetic model for nitrogen-limited wine fermentations.
    Coleman MC; Fish R; Block DE
    Appl Environ Microbiol; 2007 Sep; 73(18):5875-84. PubMed ID: 17616615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen-backboned modeling of wine-making in standard and nitrogen-added fermentations.
    David R; Dochain D; Mouret JR; Vande Wouwer A; Sablayrolles JM
    Bioprocess Biosyst Eng; 2014 Jan; 37(1):5-16. PubMed ID: 23417215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass Transfer of Anthocyanins during Extraction from Pre-Fermentative Grape Solids under Simulated Fermentation Conditions: Effect of Convective Conditions.
    Setford PC; Jeffery DW; Grbin PR; Muhlack RA
    Molecules; 2018 Dec; 24(1):. PubMed ID: 30587796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of yeast assimilable nitrogen content in wine fermentations by sequential injection analysis with spectrophotometric detetection.
    Muik B; Edelmann A; Lendl B; Ayora-Cañada MJ
    Anal Bioanal Chem; 2002 Sep; 374(1):167-72. PubMed ID: 12207260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in the volatile compound production of fermentations made from musts with increasing grape content.
    Keyzers RA; Boss PK
    J Agric Food Chem; 2010 Jan; 58(2):1153-64. PubMed ID: 20020683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of nitrogen supplementation and Saccharomyces species on hydrogen sulfide and other volatile sulfur compounds in shiraz fermentation and wine.
    Ugliano M; Fedrizzi B; Siebert T; Travis B; Magno F; Versini G; Henschke PA
    J Agric Food Chem; 2009 Jun; 57(11):4948-55. PubMed ID: 19391591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new method for monitoring the extracellular proteolytic activity of wine yeasts during alcoholic fermentation of grape must.
    Chasseriaud L; Miot-Sertier C; Coulon J; Iturmendi N; Moine V; Albertin W; Bely M
    J Microbiol Methods; 2015 Dec; 119():176-9. PubMed ID: 26529648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Augmentation of chemical and organoleptic properties in Syzygium cumini wine by incorporation of grape seeds during vinification.
    VenuGopal KS; Cherita C; Anu-Appaiah KA
    Food Chem; 2018 Mar; 242():98-105. PubMed ID: 29037742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fermentation behaviour and volatile compound production by agave and grape must yeasts in high sugar Agave tequilana and grape must fermentations.
    Arrizon J; Fiore C; Acosta G; Romano P; Gschaedler A
    Antonie Van Leeuwenhoek; 2006 Jan; 89(1):181-9. PubMed ID: 16534541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolomic by 1H NMR spectroscopy differentiates "Fiano di Avellino" white wines obtained with different yeast strains.
    Mazzei P; Spaccini R; Francesca N; Moschetti G; Piccolo A
    J Agric Food Chem; 2013 Nov; 61(45):10816-22. PubMed ID: 24117410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.