BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30451448)

  • 1. The Effect of Silver Nanoparticles on
    Markowska K; Grudniak AM; Milczarek B; Wolska KI
    Pol J Microbiol; 2018; 67(3):315-320. PubMed ID: 30451448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oleanolic acid and ursolic acid affect peptidoglycan metabolism in Listeria monocytogenes.
    Kurek A; Grudniak AM; Szwed M; Klicka A; Samluk L; Wolska KI; Janiszowska W; Popowska M
    Antonie Van Leeuwenhoek; 2010 Jan; 97(1):61-8. PubMed ID: 19894138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autolysis of Listeria monocytogenes.
    Popowska M; Kłoszewska M; Górecka S; Markiewicz Z
    Acta Microbiol Pol; 1999; 48(2):141-52. PubMed ID: 10581670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes.
    Tamayo LA; Zapata PA; Vejar ND; Azócar MI; Gulppi MA; Zhou X; Thompson GE; Rabagliati FM; Páez MA
    Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():24-31. PubMed ID: 24857461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel approach for controlling resistant Listeria monocytogenes to antimicrobials using different disinfectants types loaded on silver nanoparticles (AgNPs).
    Mohammed AN; Abdel Aziz SAA
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1954-1961. PubMed ID: 30460655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities.
    Alsammarraie FK; Wang W; Zhou P; Mustapha A; Lin M
    Colloids Surf B Biointerfaces; 2018 Nov; 171():398-405. PubMed ID: 30071481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corn cob silica as an antibacterial support for silver nanoparticles: efficacy on Escherichia coli and Listeria monocytogenes.
    Shim J; Mazumder P; Kumar M
    Environ Monit Assess; 2018 Sep; 190(10):583. PubMed ID: 30209616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of bio-nanocomposite films of agar and silver nanoparticles: laser ablation method.
    Rhim JW; Wang LF; Lee Y; Hong SI
    Carbohydr Polym; 2014 Mar; 103():456-65. PubMed ID: 24528754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The surface protein Lmo1941 with LysM domain influences cell wall structure and susceptibility of Listeria monocytogenes to cephalosporins.
    Krawczyk-Balska A; Korsak D; Popowska M
    FEMS Microbiol Lett; 2014 Aug; 357(2):175-83. PubMed ID: 24974853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films.
    Shankar S; Rhim JW
    Carbohydr Polym; 2015 Oct; 130():353-63. PubMed ID: 26076636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of citral and carvacrol on the susceptibility of Listeria monocytogenes and Listeria innocua to antibiotics.
    Zanini SF; Silva-Angulo AB; Rosenthal A; Rodrigo D; Martínez A
    Lett Appl Microbiol; 2014 May; 58(5):486-92. PubMed ID: 24443987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations of the Listeria monocytogenes peptidoglycan N-deacetylase and O-acetylase result in enhanced lysozyme sensitivity, bacteriolysis, and hyperinduction of innate immune pathways.
    Rae CS; Geissler A; Adamson PC; Portnoy DA
    Infect Immun; 2011 Sep; 79(9):3596-606. PubMed ID: 21768286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of oleanolic and ursolic acids on the hemolytic properties and biofilm formation of Listeria monocytogenes.
    Kurek A; Markowska K; Grudniak AM; Janiszowska W; Wolska KI
    Pol J Microbiol; 2014; 63(1):21-5. PubMed ID: 25033658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ampicillin resistance in Listeria monocytogenes acquired as a result of transposon mutagenesis.
    Poroś-Głuchowska J; Kłoszewska M; Markiewicz Z
    Acta Microbiol Pol; 2003; 52(2):131-42. PubMed ID: 14594400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibacterial Activity and Mechanism of Action of Osthole against
    Kong Y; Yan H; Hu J; Dang Y; Han Z; Tian B; Wang P
    J Agric Food Chem; 2024 May; 72(19):10853-10861. PubMed ID: 38708871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipase-Catalyzed Synthesis of Sucrose Monolaurate and Its Antibacterial Property and Mode of Action against Four Pathogenic Bacteria.
    Shao SY; Shi YG; Wu Y; Bian LQ; Zhu YJ; Huang XY; Pan Y; Zeng LY; Zhang RR
    Molecules; 2018 May; 23(5):. PubMed ID: 29738519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualisation of morphological interaction of diamond and silver nanoparticles with Salmonella Enteritidis and Listeria monocytogenes.
    Sawosz E; Chwalibog A; Mitura K; Mitura S; Szeliga J; Niemiec T; Rupiewicz M; Grodzik M; Sokołowska A
    J Nanosci Nanotechnol; 2011 Sep; 11(9):7635-41. PubMed ID: 22097468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibiotic susceptibility of Listeria monocytogenes in Argentina.
    Prieto M; Martínez C; Aguerre L; Rocca MF; Cipolla L; Callejo R
    Enferm Infecc Microbiol Clin; 2016 Feb; 34(2):91-5. PubMed ID: 25976753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of pectin/silver nanoparticles composite films with UV-light barrier and properties.
    Shankar S; Tanomrod N; Rawdkuen S; Rhim JW
    Int J Biol Macromol; 2016 Nov; 92():842-849. PubMed ID: 27492557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibacterial activity of a novel Forsythia suspensa fruit mediated green silver nanoparticles against food-borne pathogens and mechanisms investigation.
    Du J; Hu Z; Yu Z; Li H; Pan J; Zhao D; Bai Y
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():247-253. PubMed ID: 31146997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.