BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 30451647)

  • 1. Exposure to airborne nano-titanium dioxide during airless spray painting and sanding.
    West GH; Cooper MR; Burrelli LG; Dresser D; Lippy BE
    J Occup Environ Hyg; 2019 Mar; 16(3):218-228. PubMed ID: 30451647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhalation exposure during spray application and subsequent sanding of a wood sealant containing zinc oxide nanoparticles.
    Cooper MR; West GH; Burrelli LG; Dresser D; Griffin KN; Segrave AM; Perrenoud J; Lippy BE
    J Occup Environ Hyg; 2017 Jul; 14(7):510-522. PubMed ID: 28406371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NTP Toxicity Study Report on the atmospheric characterization, particle size, chemical composition, and workplace exposure assessment of cellulose insulation (CELLULOSEINS).
    Morgan DL
    Toxic Rep Ser; 2006 Aug; (74):1-62, A1-C2. PubMed ID: 17160106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Occupational exposure risk during spraying of biocidal paint containing silver nanoparticles.
    West GH; Castaneda FI; Burrelli LG; Dresser D; Cooper MR; Brooks SB; Lippy BE
    J Occup Environ Hyg; 2021 Jun; 18(6):237-249. PubMed ID: 33989130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of paint dust aerosol generated from mechanical abrasion of TiO
    Nored AW; Chalbot MG; Kavouras IG
    J Occup Environ Hyg; 2018 Sep; 15(9):629-640. PubMed ID: 29856686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hexavalent chromium exposures and exposure-control technologies in American enterprise: results of a NIOSH field research study.
    Blade LM; Yencken MS; Wallace ME; Catalano JD; Khan A; Topmiller JL; Shulman SA; Martinez A; Crouch KG; Bennett JS
    J Occup Environ Hyg; 2007 Aug; 4(8):596-618. PubMed ID: 17577750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of dust release from epoxy and paint nanocomposites and conventional products during sanding and sawing.
    Gomez V; Levin M; Saber AT; Irusta S; Dal Maso M; Hanoi R; Santamaria J; Jensen KA; Wallin H; Koponen IK
    Ann Occup Hyg; 2014 Oct; 58(8):983-94. PubMed ID: 25030708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential Release of Manufactured Nano Objects During Sanding of Nano-Coated Wood Surfaces.
    Fransman W; Bekker C; Tromp P; Duis WB
    Ann Occup Hyg; 2016 Aug; 60(7):875-84. PubMed ID: 27234377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An evaluation of on-tool shrouds for controlling respirable crystalline silica in restoration stone work.
    Healy CB; Coggins MA; Van Tongeren M; MacCalman L; McGowan P
    Ann Occup Hyg; 2014 Nov; 58(9):1155-67. PubMed ID: 25261456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a Dust Control for a Small Slab-Riding Dowel Drill for Concrete Pavement.
    Echt A; Mead K
    Ann Occup Hyg; 2016 May; 60(4):519-24. PubMed ID: 26826033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breathing zone particle size and lead concentration from sanding operations to remove lead based paints.
    Alexander WK; Carpenter RL; Kimmel EC
    Drug Chem Toxicol; 1999 Feb; 22(1):41-56. PubMed ID: 10189570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing exposures to airborne metals and nanoparticle emissions in a refinery.
    Miller A; Drake PL; Hintz P; Habjan M
    Ann Occup Hyg; 2010 Jul; 54(5):504-13. PubMed ID: 20403942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residential and commercial painters' exposure to lead during surface preparation.
    Scholz PF; Materna BL; Harrington D; Uratsu C
    AIHA J (Fairfax, Va); 2002; 63(1):22-8. PubMed ID: 11843421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exposure assessment of workplaces manufacturing nanosized TiO2 and silver.
    Lee JH; Kwon M; Ji JH; Kang CS; Ahn KH; Han JH; Yu IJ
    Inhal Toxicol; 2011 Mar; 23(4):226-36. PubMed ID: 21456955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wood dust particle and mass concentrations and filtration efficiency in sanding of wood materials.
    Welling I; Lehtimäki M; Rautio S; Lähde T; Enbom S; Hynynen P; Hämeri K
    J Occup Environ Hyg; 2009 Feb; 6(2):90-8. PubMed ID: 19065389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Worker Exposure and High Time-Resolution Analyses of Process-Related Submicrometre Particle Concentrations at Mixing Stations in Two Paint Factories.
    Koponen IK; Koivisto AJ; Jensen KA
    Ann Occup Hyg; 2015 Jul; 59(6):749-63. PubMed ID: 25863226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determinants of Airborne Solvent Exposure in the Collision Repair Industry.
    Keer S; Taptiklis P; Glass B; McLean D; McGlothlin JD; Douwes J
    Ann Work Expo Health; 2018 Aug; 62(7):871-883. PubMed ID: 29912331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of dust released from sanding conventional and nanoparticle-doped wall and wood coatings.
    Koponen IK; Jensen KA; Schneider T
    J Expo Sci Environ Epidemiol; 2011; 21(4):408-18. PubMed ID: 20485339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Occupational Exposures to Respirable Silica and Dust in Demolition, Crushing, and Chipping Activities.
    Bello A; Mugford C; Murray A; Shepherd S; Woskie SR
    Ann Work Expo Health; 2019 Jan; 63(1):34-44. PubMed ID: 30379992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Occupational exposure to airborne nanomaterials: An assessment of worker exposure to aerosolized metal oxide nanoparticles in a semiconductor fab and subfab.
    Brenner SA; Neu-Baker NM; Caglayan C; Zurbenko IG
    J Occup Environ Hyg; 2016 Sep; 13(9):D138-47. PubMed ID: 27135871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.