These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 30451810)
1. Recovery of Bone Mineral Mass After Upper Limb Fractures in Children and Teenagers. Maggio ABR; Martin X; Tabard-Fougère A; Steiger C; Dayer R; Delhumeau C; Ceroni D J Pediatr Orthop; 2019 Apr; 39(4):e248-e252. PubMed ID: 30451810 [TBL] [Abstract][Full Text] [Related]
2. Is bone mineral mass truly decreased in teenagers with a first episode of forearm fracture? A prospective longitudinal study. Ceroni D; Martin X; Delhumeau-Cartier C; Rizzoli R; Kaelin A; Farpour-Lambert N J Pediatr Orthop; 2012 Sep; 32(6):579-86. PubMed ID: 22892619 [TBL] [Abstract][Full Text] [Related]
3. Recovery of decreased bone mineral mass after lower-limb fractures in adolescents. Ceroni D; Martin XE; Delhumeau C; Farpour-Lambert NJ; De Coulon G; Dubois-Ferrière V; Rizzoli R J Bone Joint Surg Am; 2013 Jun; 95(11):1037-43. PubMed ID: 23780542 [TBL] [Abstract][Full Text] [Related]
4. Effects of cast-mediated immobilization on bone mineral mass at various sites in adolescents with lower-extremity fracture. Ceroni D; Martin X; Delhumeau C; Rizzoli R; Kaelin A; Farpour-Lambert N J Bone Joint Surg Am; 2012 Feb; 94(3):208-16. PubMed ID: 22298052 [TBL] [Abstract][Full Text] [Related]
5. Bone density interpretation and relevance in Caucasian children aged 9-17 years of age: insights from a population-based fracture study. Jones G; Ma D; Cameron F J Clin Densitom; 2006; 9(2):202-9. PubMed ID: 16785082 [TBL] [Abstract][Full Text] [Related]
6. Recovery of physical activity levels in adolescents after lower limb fractures: a longitudinal, accelerometry-based activity monitor study. Ceroni D; Martin X; Lamah L; Delhumeau C; Farpour-Lambert N; De Coulon G; Ferrière VD BMC Musculoskelet Disord; 2012 Jul; 13():131. PubMed ID: 22831387 [TBL] [Abstract][Full Text] [Related]
7. Factors affecting bone mineral mass loss after lower-limb fractures in a pediatric population. Ceroni D; Martin X; Kherad O; Salvo D; Dubois-Ferrière V J Pediatr Orthop; 2015 Jun; 35(4):345-51. PubMed ID: 25171674 [TBL] [Abstract][Full Text] [Related]
8. Bone and body composition of children and adolescents with repeated forearm fractures. Goulding A; Grant AM; Williams SM J Bone Miner Res; 2005 Dec; 20(12):2090-6. PubMed ID: 16294262 [TBL] [Abstract][Full Text] [Related]
9. Bone strength and muscle properties in postmenopausal women with and without a recent distal radius fracture. Crockett K; Arnold CM; Farthing JP; Chilibeck PD; Johnston JD; Bath B; Baxter-Jones AD; Kontulainen SA Osteoporos Int; 2015 Oct; 26(10):2461-9. PubMed ID: 26001559 [TBL] [Abstract][Full Text] [Related]
10. Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy x-ray absorptiometry study. Goulding A; Jones IE; Taylor RW; Williams SM; Manning PJ J Pediatr; 2001 Oct; 139(4):509-15. PubMed ID: 11598596 [TBL] [Abstract][Full Text] [Related]
11. A tibial shaft fracture sustained in childhood or adolescence does not seem to interfere with attainment of peak bone density. Leppälä J; Kannus P; Sievänen H; Vuori I; Järvinen M J Bone Miner Res; 1999 Jun; 14(6):988-93. PubMed ID: 10352108 [TBL] [Abstract][Full Text] [Related]
12. The association between bone mineral density, metacarpal morphometry, and upper limb fractures in children: a population-based case-control study. Ma D; Jones G J Clin Endocrinol Metab; 2003 Apr; 88(4):1486-91. PubMed ID: 12679427 [TBL] [Abstract][Full Text] [Related]
13. Risk-taking, coordination and upper limb fractures in children: a population based case-control study. Ma D; Morley R; Jones G Osteoporos Int; 2004 Aug; 15(8):633-8. PubMed ID: 14735299 [TBL] [Abstract][Full Text] [Related]
14. Change in bone mass after Colles' fracture: a case report on unique data collection and long-term implications. Ilich JZ; Zito M; Brownbill RA; Joyce ME J Clin Densitom; 2000; 3(4):383-9. PubMed ID: 11175919 [TBL] [Abstract][Full Text] [Related]
15. Four-year gain in bone mineral in girls with and without past forearm fractures: a DXA study. Dual energy X-ray absorptiometry. Jones IE; Taylor RW; Williams SM; Manning PJ; Goulding A J Bone Miner Res; 2002 Jun; 17(6):1065-72. PubMed ID: 12054162 [TBL] [Abstract][Full Text] [Related]
16. Deficits in distal radius bone strength, density and microstructure are associated with forearm fractures in girls: an HR-pQCT study. Määttä M; Macdonald HM; Mulpuri K; McKay HA Osteoporos Int; 2015 Mar; 26(3):1163-74. PubMed ID: 25572041 [TBL] [Abstract][Full Text] [Related]
17. Digital X-ray radiogrammetry predicts hip, wrist and vertebral fracture risk in elderly women: a prospective analysis from the study of osteoporotic fractures. Bouxsein ML; Palermo L; Yeung C; Black DM Osteoporos Int; 2002 May; 13(5):358-65. PubMed ID: 12086345 [TBL] [Abstract][Full Text] [Related]
18. Comparisons of noninvasive bone mineral measurements in assessing age-related loss, fracture discrimination, and diagnostic classification. Grampp S; Genant HK; Mathur A; Lang P; Jergas M; Takada M; Glüer CC; Lu Y; Chavez M J Bone Miner Res; 1997 May; 12(5):697-711. PubMed ID: 9144335 [TBL] [Abstract][Full Text] [Related]
19. Rapid remineralization of the distal radius after forearm fracture in children. Fung EB; Humphrey ML; Gildengorin G; Goldstein N; Hoffinger SA J Pediatr Orthop; 2011 Mar; 31(2):138-43. PubMed ID: 21307706 [TBL] [Abstract][Full Text] [Related]
20. Estimation of wrist fracture load using phalangeal speed of sound: an in vitro study. Njeh CF; Wu C; Fan B; Hans D; Fuerst T; He Y; Genant HK Ultrasound Med Biol; 2000 Nov; 26(9):1517-23. PubMed ID: 11179626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]