These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 30451842)
1. Sugar-based bactericides targeting phosphatidylethanolamine-enriched membranes. Dias C; Pais JP; Nunes R; Blázquez-Sánchez MT; Marquês JT; Almeida AF; Serra P; Xavier NM; Vila-Viçosa D; Machuqueiro M; Viana AS; Martins A; Santos MS; Pelerito A; Dias R; Tenreiro R; Oliveira MC; Contino M; Colabufo NA; de Almeida RFM; Rauter AP Nat Commun; 2018 Nov; 9(1):4857. PubMed ID: 30451842 [TBL] [Abstract][Full Text] [Related]
2. [Determining the sensitivity of anthrax bacteria to antibiotics for its differentiation from the antibiotic sensitivity of spore-forming saprophytes]. Proskurina VA; Buravtseva NP; Iaroshchuk VA; Neliapin NM; Eremenko EI Antibiot Khimioter; 1992 Feb; 37(2):23-5. PubMed ID: 1514849 [No Abstract] [Full Text] [Related]
3. Structure-activity relationships of Bacillus cereus and Bacillus anthracis dihydrofolate reductase: toward the identification of new potent drug leads. Joska TM; Anderson AC Antimicrob Agents Chemother; 2006 Oct; 50(10):3435-43. PubMed ID: 17005826 [TBL] [Abstract][Full Text] [Related]
4. In vitro determination of Bacillus thuringiensis, Bacillus cereus, and related bacilli. Krieg A J Invertebr Pathol; 1970 May; 15(3):313-20. PubMed ID: 4986479 [No Abstract] [Full Text] [Related]
5. Etest for antibiotic susceptibility testing of Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis: evaluation of a French collection. Mérens A; Vaissaire J; Cavallo JD; Le Doujet C; Gros C; Bigaillon C; Paucod JC; Berger F; Valade E; Vidal D Int J Antimicrob Agents; 2008 May; 31(5):490-2. PubMed ID: 18316178 [No Abstract] [Full Text] [Related]
6. A differential scanning calorimetric and 31P NMR spectroscopic study of the effect of transmembrane alpha-helical peptides on the lamellar-reversed hexagonal phase transition of phosphatidylethanolamine model membranes. Liu F; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2001 Jan; 40(3):760-8. PubMed ID: 11170393 [TBL] [Abstract][Full Text] [Related]
7. Polysaccharide deacetylases serve as new targets for the design of inhibitors against Bacillus anthracis and Bacillus cereus. Balomenou S; Koutsioulis D; Tomatsidou A; Tzanodaskalaki M; Petratos K; Bouriotis V Bioorg Med Chem; 2018 Jul; 26(13):3845-3851. PubMed ID: 29983281 [TBL] [Abstract][Full Text] [Related]
8. Teixobactin kills bacteria by a two-pronged attack on the cell envelope. Shukla R; Lavore F; Maity S; Derks MGN; Jones CR; Vermeulen BJA; Melcrová A; Morris MA; Becker LM; Wang X; Kumar R; Medeiros-Silva J; van Beekveld RAM; Bonvin AMJJ; Lorent JH; Lelli M; Nowick JS; MacGillavry HD; Peoples AJ; Spoering AL; Ling LL; Hughes DE; Roos WH; Breukink E; Lewis K; Weingarth M Nature; 2022 Aug; 608(7922):390-396. PubMed ID: 35922513 [TBL] [Abstract][Full Text] [Related]
9. Helical cationic antimicrobial peptide length and its impact on membrane disruption. Juba ML; Porter DK; Williams EH; Rodriguez CA; Barksdale SM; Bishop BM Biochim Biophys Acta; 2015 May; 1848(5):1081-91. PubMed ID: 25660753 [TBL] [Abstract][Full Text] [Related]
10. The interrelation of phosphatidylethanolamine and glycosyl diglycerides in bacterial membranes. Minnikin DE; Abdolrahimzadeh H; Baddiley J Biochem J; 1971 Sep; 124(2):447-8. PubMed ID: 5003473 [No Abstract] [Full Text] [Related]
11. The structure of the cell wall peptidoglycan of Bacillus cereus RSVF1, a strain closely related to Bacillus anthracis. Severin A; Tabei K; Tomasz A Microb Drug Resist; 2004; 10(2):77-82. PubMed ID: 15256021 [TBL] [Abstract][Full Text] [Related]
12. Carbohydrates and glycoproteins of Bacillus anthracis and related bacilli: targets for biodetection. Fox A; Stewart GC; Waller LN; Fox KF; Harley WM; Price RL J Microbiol Methods; 2003 Aug; 54(2):143-52. PubMed ID: 12782370 [TBL] [Abstract][Full Text] [Related]
13. [Differentiation of aerobic spore-forming bacteria with special reference to Bacillus anthracis and Bacullus thuringiensis]. Krieg A Zentralbl Bakteriol Orig; 1970; 213(1):63-8. PubMed ID: 4989311 [No Abstract] [Full Text] [Related]
14. [Antibiotic from Bac. cereus var. mycoides. 1]. Okpanyi SN Arzneimittelforschung; 1974 Jun; 24(6):862-5. PubMed ID: 4211301 [No Abstract] [Full Text] [Related]
15. Influence of lipidation on the mode of action of a small RW-rich antimicrobial peptide. Wenzel M; Schriek P; Prochnow P; Albada HB; Metzler-Nolte N; Bandow JE Biochim Biophys Acta; 2016 May; 1858(5):1004-11. PubMed ID: 26603779 [TBL] [Abstract][Full Text] [Related]
16. S4(13)-PV cell-penetrating peptide induces physical and morphological changes in membrane-mimetic lipid systems and cell membranes: implications for cell internalization. Cardoso AM; Trabulo S; Cardoso AL; Lorents A; Morais CM; Gomes P; Nunes C; Lúcio M; Reis S; Padari K; Pooga M; Pedroso de Lima MC; Jurado AS Biochim Biophys Acta; 2012 Mar; 1818(3):877-88. PubMed ID: 22230348 [TBL] [Abstract][Full Text] [Related]
18. Binding domains of Bacillus anthracis phage endolysins recognize cell culture age-related features on the bacterial surface. Paskaleva EE; Mundra RV; Mehta KK; Pangule RC; Wu X; Glatfelter WS; Chen Z; Dordick JS; Kane RS Biotechnol Prog; 2015; 31(6):1487-93. PubMed ID: 26399565 [TBL] [Abstract][Full Text] [Related]
19. Studies on bacterial cell wall inhibitors. II. Inhibition of peptidoglycan synthesis in vivo and in vitro by amphomycin. Tanaka H; Iwai Y; Oiwa R; Shinohara S; Shimizu S; Oka T; Omura S Biochim Biophys Acta; 1977 May; 497(3):633-40. PubMed ID: 407940 [No Abstract] [Full Text] [Related]
20. The importance of bacterial membrane composition in the structure and function of aurein 2.2 and selected variants. Cheng JT; Hale JD; Elliott M; Hancock RE; Straus SK Biochim Biophys Acta; 2011 Mar; 1808(3):622-33. PubMed ID: 21144817 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]