BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 30451953)

  • 1. Deep transfer learning-based hologram classification for molecular diagnostics.
    Kim SJ; Wang C; Zhao B; Im H; Min J; Choi HJ; Tadros J; Choi NR; Castro CM; Weissleder R; Lee H; Lee K
    Sci Rep; 2018 Nov; 8(1):17003. PubMed ID: 30451953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sparsity-Based Pixel Super Resolution for Lens-Free Digital In-line Holography.
    Song J; Leon Swisher C; Im H; Jeong S; Pathania D; Iwamoto Y; Pivovarov M; Weissleder R; Lee H
    Sci Rep; 2016 Apr; 6():24681. PubMed ID: 27098438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks.
    Luo Z; Yurt A; Stahl R; Lambrechts A; Reumers V; Braeken D; Lagae L
    Opt Express; 2019 May; 27(10):13581-13595. PubMed ID: 31163820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput label-free cell detection and counting from diffraction patterns with deep fully convolutional neural networks.
    Yi F; Park S; Moon I
    J Biomed Opt; 2021 Mar; 26(3):. PubMed ID: 33686845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hologram classification of occluded and deformable objects with speckle noise contamination by deep learning.
    Lam HHS; Tsang PWM; Poon TC
    J Opt Soc Am A Opt Image Sci Vis; 2022 Mar; 39(3):411-417. PubMed ID: 35297424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards real-time photorealistic 3D holography with deep neural networks.
    Shi L; Li B; Kim C; Kellnhofer P; Matusik W
    Nature; 2021 Mar; 591(7849):234-239. PubMed ID: 33692557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast and accurate 3D object recognition directly from digital holograms.
    Seifi M; Denis L; Fournier C
    J Opt Soc Am A Opt Image Sci Vis; 2013 Nov; 30(11):2216-24. PubMed ID: 24322918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-chip label-free cell classification based directly on off-axis holograms and spatial-frequency-invariant deep learning.
    Dudaie M; Barnea I; Nissim N; Shaked NT
    Sci Rep; 2023 Jul; 13(1):12370. PubMed ID: 37524884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TOP-GAN: Stain-free cancer cell classification using deep learning with a small training set.
    Rubin M; Stein O; Turko NA; Nygate Y; Roitshtain D; Karako L; Barnea I; Giryes R; Shaked NT
    Med Image Anal; 2019 Oct; 57():176-185. PubMed ID: 31325721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partition calculation for zero-order and conjugate image removal in digital in-line holography.
    Ma L; Wang H; Li Y; Jin H
    Opt Express; 2012 Jan; 20(2):1805-15. PubMed ID: 22274525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning-Based Framework for Fast and Accurate Acoustic Hologram Generation.
    Lee MH; Lew HM; Youn S; Kim T; Hwang JY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Dec; 69(12):3353-3366. PubMed ID: 36331635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic focusing in digital holography and its application to stretched holograms.
    Memmolo P; Distante C; Paturzo M; Finizio A; Ferraro P; Javidi B
    Opt Lett; 2011 May; 36(10):1945-7. PubMed ID: 21593944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning-based color holographic microscopy.
    Liu T; Wei Z; Rivenson Y; de Haan K; Zhang Y; Wu Y; Ozcan A
    J Biophotonics; 2019 Nov; 12(11):e201900107. PubMed ID: 31309728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of diffracted image patterns from volume holographic imaging systems and applications to image processing.
    Castro JM; de Leon E; Barton JK; Kostuk RK
    Appl Opt; 2011 Jan; 50(2):170-6. PubMed ID: 21221141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modified convolution method to reconstruct particle hologram with an elliptical Gaussian beam illumination.
    Wu X; Wu Y; Yang J; Wang Z; Zhou B; Gréhan G; Cen K
    Opt Express; 2013 May; 21(10):12803-14. PubMed ID: 23736499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate label-free 3-part leukocyte recognition with single cell lens-free imaging flow cytometry.
    Li Y; Cornelis B; Dusa A; Vanmeerbeeck G; Vercruysse D; Sohn E; Blaszkiewicz K; Prodanov D; Schelkens P; Lagae L
    Comput Biol Med; 2018 May; 96():147-156. PubMed ID: 29573668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Convolution Neural Network for Malignancy Detection and Classification in Microscopic Uterine Cervix Cell Images.
    P B S; Faruqi F; K S H; Kudva R
    Asian Pac J Cancer Prev; 2019 Nov; 20(11):3447-3456. PubMed ID: 31759371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Digital holography super-resolution for accurate three-dimensional reconstruction of particle holograms.
    Verrier N; Fournier C
    Opt Lett; 2015 Jan; 40(2):217-20. PubMed ID: 25679848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Off-axis digital hologram reconstruction: some practical considerations.
    Verrier N; Atlan M
    Appl Opt; 2011 Dec; 50(34):H136-46. PubMed ID: 22192998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Faithful reconstruction of digital holograms captured by FINCH using a Hamming window function in the Fresnel propagation.
    Siegel N; Rosen J; Brooker G
    Opt Lett; 2013 Oct; 38(19):3922-5. PubMed ID: 24081089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.