These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30452378)

  • 1. A Fully Integrated RF-Powered Energy-Replenishing Current-Controlled Stimulator.
    Ha S; Kim C; Park J; Cauwenberghs G; Mercier PP
    IEEE Trans Biomed Circuits Syst; 2019 Feb; 13(1):191-202. PubMed ID: 30452378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Energy-Efficient Wirelessly Powered Millimeter-Scale Neurostimulator Implant Based on Systematic Codesign of an Inductive Loop Antenna and a Custom Rectifier.
    Lyu H; Wang J; La JH; Chung JM; Babakhani A
    IEEE Trans Biomed Circuits Syst; 2018 Oct; 12(5):1131-1143. PubMed ID: 30040661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An energy-efficient, adiabatic electrode stimulator with inductive energy recycling and feedback current regulation.
    Arfin SK; Sarpeshkar R
    IEEE Trans Biomed Circuits Syst; 2012 Feb; 6(1):1-14. PubMed ID: 23852740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Fully Integrated, Power-Efficient, 0.07-2.08 mA, High-Voltage Neural Stimulator in a Standard CMOS Process.
    Palomeque-Mangut D; Rodríguez-Vázquez Á; Delgado-Restituto M
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 16-Channel biphasic current-mode programmable charge balanced neural stimulation.
    Li X; Zhong S; Morizio J
    Biomed Eng Online; 2017 Aug; 16(1):104. PubMed ID: 28806960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 3 mm × 3 mm Fully Integrated Wireless Power Receiver and Neural Interface System-on-Chip.
    Kim C; Park J; Ha S; Akinin A; Kubendran R; Mercier PP; Cauwenberghs G
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1736-1746. PubMed ID: 31581095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wearable, battery-powered, wireless, programmable 8-channel neural stimulator.
    Farahmand S; Vahedian H; Abedinkhan Eslami M; Sodagar AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6120-3. PubMed ID: 23367325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of simple wireless neurostimulators and sensors.
    Gulick DW; Towe BC
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3130-3. PubMed ID: 25570654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Battery powered neuromuscular stimulator circuit for use during simultaneous recording of myoelectric signals.
    Thorsen R; Ferrarin M
    Med Eng Phys; 2009 Oct; 31(8):1032-7. PubMed ID: 19620017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Universal serial bus powered and controlled isolated constant-current physiological stimulator.
    Holcomb MR; Bekele RY; Lima EA; Wikswo JP
    Rev Sci Instrum; 2008 Dec; 79(12):126103. PubMed ID: 19123594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active books: the design of an implantable stimulator that minimizes cable count using integrated circuits very close to electrodes.
    Liu X; Demosthenous A; Vanhoestenberghe A; Jiang D; Donaldson N
    IEEE Trans Biomed Circuits Syst; 2012 Jun; 6(3):216-27. PubMed ID: 23853144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compact, Energy-Efficient High-Frequency Switched Capacitor Neural Stimulator With Active Charge Balancing.
    Hsu WY; Schmid A
    IEEE Trans Biomed Circuits Syst; 2017 Aug; 11(4):878-888. PubMed ID: 28715337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A High-Resolution Ultrasonically Powered And Controlled Optogenetic Stimulator With A Novel Fully Analog Time To Current Converter.
    Rashidi A; Laursen K; Hosseini S; Moradi F
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3411-3414. PubMed ID: 33018736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An implantable RF-powered dual channel stimulator.
    Poon CW; Ko WH; Peckham PH; McNeal DR; Su N
    Biotelem Patient Monit; 1981; 8(3):180-8. PubMed ID: 7295933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A stimulator with wireless power and signal transmission for implantation in animal experiments and other applications.
    Winter KF; Hartmann R; Klinke R
    J Neurosci Methods; 1998 Jan; 79(1):79-85. PubMed ID: 9531463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A zero-voltage switching technique for minimizing the current-source power of implanted stimulators.
    Çilingiroğlu U; İpek S
    IEEE Trans Biomed Circuits Syst; 2013 Aug; 7(4):469-79. PubMed ID: 23893206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RF rectifiers for EM power harvesting in a Deep Brain Stimulating device.
    Hosain MK; Kouzani AZ; Tye S; Kaynak A; Berk M
    Australas Phys Eng Sci Med; 2015 Mar; 38(1):157-72. PubMed ID: 25600671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A low-power 13.56 MHz RF front-end circuit for implantable biomedical devices.
    Lee SY; Hong JH; Hsieh CH; Liang MC; Kung JY
    IEEE Trans Biomed Circuits Syst; 2013 Jun; 7(3):256-65. PubMed ID: 23853325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A High-Voltage-Tolerant and Precise Charge-Balanced Neuro-Stimulator in Low Voltage CMOS Process.
    Luo Z; Ker MD
    IEEE Trans Biomed Circuits Syst; 2016 Dec; 10(6):1087-1099. PubMed ID: 27046880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fully-integrated high-compliance voltage SoC for epi-retinal and neural prostheses.
    Lo YK; Chen K; Gad P; Liu W
    IEEE Trans Biomed Circuits Syst; 2013 Dec; 7(6):761-72. PubMed ID: 24473541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.