These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 30452384)

  • 1. Mobile Robot Networks for Environmental Monitoring: A Cooperative Receding Horizon Temporal Logic Control Approach.
    Lu Q; Han QL
    IEEE Trans Cybern; 2019 Feb; 49(2):698-711. PubMed ID: 30452384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Event-Based Communication and Finite-Time Consensus Control of Mobile Sensor Networks for Environmental Monitoring.
    Hu Y; Lu Q; Hu Y
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30081518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A learning-based synthesis approach of reward asynchronous probabilistic games against the linear temporal logic winning condition.
    Zhao W; Liu Z
    PeerJ Comput Sci; 2022; 8():e1094. PubMed ID: 36091983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperative Control of Mobile Sensor Networks for Environmental Monitoring: An Event-Triggered Finite-Time Control Scheme.
    Lu Q; Han QL; Zhang B; Liu D; Liu S
    IEEE Trans Cybern; 2017 Dec; 47(12):4134-4147. PubMed ID: 28113387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-Optimal Tracking Control of Mobile Robots Via Receding-Horizon Dual Heuristic Programming.
    Lian C; Xu X; Chen H; He H
    IEEE Trans Cybern; 2016 Nov; 46(11):2484-2496. PubMed ID: 26642462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On position/force tracking control problem of cooperative robot manipulators using adaptive fuzzy backstepping approach.
    Baigzadehnoe B; Rahmani Z; Khosravi A; Rezaie B
    ISA Trans; 2017 Sep; 70():432-446. PubMed ID: 28801078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Humanoid Robot Cooperative Motion Control Based on Optimal Parameterization.
    Zhong Q; Li Y; Zheng C; Shen T
    Front Neurorobot; 2021; 15():699820. PubMed ID: 34234665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scalable time-constrained planning of multi-robot systems.
    Nikou A; Heshmati-Alamdari S; Dimarogonas DV
    Auton Robots; 2020; 44(8):1451-1467. PubMed ID: 33088023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Interpretable Fuzzy System Learned Through Online Rule Generation and Multiobjective ACO With a Mobile Robot Control Application.
    Juang CF; Jeng TL; Chang YC
    IEEE Trans Cybern; 2016 Dec; 46(12):2706-2718. PubMed ID: 26513819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Path planning in the hippocampo-prefrontal cortex pathway: an adaptive model based receding horizon planner.
    Ahmadi-Pajouh MA; Towhidkhah F; Gharibzadeh S; Mashhadimalek M
    Med Hypotheses; 2007; 68(6):1411-5. PubMed ID: 17337125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compositional RL Agents That Follow Language Commands in Temporal Logic.
    Kuo YL; Katz B; Barbu A
    Front Robot AI; 2021; 8():689550. PubMed ID: 34350213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Receding Horizon Stabilization and Disturbance Attenuation for Neural Networks With Time-Varying Delay.
    Ahn CK; Shi P; Wu L
    IEEE Trans Cybern; 2015 Dec; 45(12):2680-92. PubMed ID: 25561601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motion planning and coordination for robot systems based on representation space.
    Su J; Xie W
    IEEE Trans Syst Man Cybern B Cybern; 2011 Feb; 41(1):248-59. PubMed ID: 20624700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical planning with state abstractions for temporal task specifications.
    Oh Y; Patel R; Nguyen T; Huang B; Berg M; Pavlick E; Tellex S
    Auton Robots; 2022; 46(6):667-683. PubMed ID: 35692555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Information space receding horizon control.
    Sunberg Z; Chakravorty S; Scott Erwin R
    IEEE Trans Cybern; 2013 Dec; 43(6):2255-60. PubMed ID: 23757584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Task-Driven Reinforcement Learning With Action Primitives for Long-Horizon Manipulation Skills.
    Wang H; Zhang H; Li L; Kan Z; Song Y
    IEEE Trans Cybern; 2024 Aug; 54(8):4513-4526. PubMed ID: 37566505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary Fuzzy Control and Navigation for Two Wheeled Robots Cooperatively Carrying an Object in Unknown Environments.
    Juang CF; Lai MG; Zeng WT
    IEEE Trans Cybern; 2015 Sep; 45(9):1731-43. PubMed ID: 25398185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full-state tracking control of a mobile robot using neural networks.
    Chaitanya VS
    Int J Neural Syst; 2005 Oct; 15(5):403-14. PubMed ID: 16278944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Information Space Receding Horizon Control for Multisensor Tasking Problems.
    Sunberg Z; Chakravorty S; Erwin RS
    IEEE Trans Cybern; 2016 Jun; 46(6):1325-36. PubMed ID: 26259208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Receding horizon online optimization for torque control of gasoline engines.
    Kang M; Shen T
    ISA Trans; 2016 Nov; 65():371-383. PubMed ID: 27520854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.