These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 30452539)
1. CAARS: comparative assembly and annotation of RNA-Seq data. Rey C; Veber P; Boussau B; Sémon M Bioinformatics; 2019 Jul; 35(13):2199-2207. PubMed ID: 30452539 [TBL] [Abstract][Full Text] [Related]
2. CodingQuarry: highly accurate hidden Markov model gene prediction in fungal genomes using RNA-seq transcripts. Testa AC; Hane JK; Ellwood SR; Oliver RP BMC Genomics; 2015 Mar; 16(1):170. PubMed ID: 25887563 [TBL] [Abstract][Full Text] [Related]
3. Grouper: graph-based clustering and annotation for improved de novo transcriptome analysis. Malik L; Almodaresi F; Patro R Bioinformatics; 2018 Oct; 34(19):3265-3272. PubMed ID: 29746620 [TBL] [Abstract][Full Text] [Related]
4. A high-quality annotated transcriptome of swine peripheral blood. Liu H; Smith TPL; Nonneman DJ; Dekkers JCM; Tuggle CK BMC Genomics; 2017 Jun; 18(1):479. PubMed ID: 28646867 [TBL] [Abstract][Full Text] [Related]
5. FRAMA: from RNA-seq data to annotated mRNA assemblies. Bens M; Sahm A; Groth M; Jahn N; Morhart M; Holtze S; Hildebrandt TB; Platzer M; Szafranski K BMC Genomics; 2016 Jan; 17():54. PubMed ID: 26763976 [TBL] [Abstract][Full Text] [Related]
6. BRANCH: boosting RNA-Seq assemblies with partial or related genomic sequences. Bao E; Jiang T; Girke T Bioinformatics; 2013 May; 29(10):1250-9. PubMed ID: 23493323 [TBL] [Abstract][Full Text] [Related]
7. Efficient assembly and annotation of the transcriptome of catfish by RNA-Seq analysis of a doubled haploid homozygote. Liu S; Zhang Y; Zhou Z; Waldbieser G; Sun F; Lu J; Zhang J; Jiang Y; Zhang H; Wang X; Rajendran KV; Khoo L; Kucuktas H; Peatman E; Liu Z BMC Genomics; 2012 Nov; 13():595. PubMed ID: 23127152 [TBL] [Abstract][Full Text] [Related]
8. FINDER: an automated software package to annotate eukaryotic genes from RNA-Seq data and associated protein sequences. Banerjee S; Bhandary P; Woodhouse M; Sen TZ; Wise RP; Andorf CM BMC Bioinformatics; 2021 Apr; 22(1):205. PubMed ID: 33879057 [TBL] [Abstract][Full Text] [Related]
9. Identification of novel transcripts in annotated genomes using RNA-Seq. Roberts A; Pimentel H; Trapnell C; Pachter L Bioinformatics; 2011 Sep; 27(17):2325-9. PubMed ID: 21697122 [TBL] [Abstract][Full Text] [Related]
10. Optimizing de novo assembly of short-read RNA-seq data for phylogenomics. Yang Y; Smith SA BMC Genomics; 2013 May; 14():328. PubMed ID: 23672450 [TBL] [Abstract][Full Text] [Related]
11. RapMap: a rapid, sensitive and accurate tool for mapping RNA-seq reads to transcriptomes. Srivastava A; Sarkar H; Gupta N; Patro R Bioinformatics; 2016 Jun; 32(12):i192-i200. PubMed ID: 27307617 [TBL] [Abstract][Full Text] [Related]
12. ChopStitch: exon annotation and splice graph construction using transcriptome assembly and whole genome sequencing data. Khan H; Mohamadi H; Vandervalk BP; Warren RL; Chu J; Birol I Bioinformatics; 2018 May; 34(10):1697-1704. PubMed ID: 29300846 [TBL] [Abstract][Full Text] [Related]
13. Necklace: combining reference and assembled transcriptomes for more comprehensive RNA-Seq analysis. Davidson NM; Oshlack A Gigascience; 2018 May; 7(5):. PubMed ID: 29722876 [TBL] [Abstract][Full Text] [Related]
14. riboCleaner: a pipeline to identify and quantify rRNA read contamination from RNA-seq data in plants. Huang P; Davis E; Cao X; Cameron HJ Bioinformatics; 2022 Aug; 38(15):3840-3843. PubMed ID: 35731209 [TBL] [Abstract][Full Text] [Related]
15. Comprehensive evaluation of de novo transcriptome assembly programs and their effects on differential gene expression analysis. Wang S; Gribskov M Bioinformatics; 2017 Feb; 33(3):327-333. PubMed ID: 28172640 [TBL] [Abstract][Full Text] [Related]
16. Improved annotation with de novo transcriptome assembly in four social amoeba species. Singh R; Lawal HM; Schilde C; Glöckner G; Barton GJ; Schaap P; Cole C BMC Genomics; 2017 Jan; 18(1):120. PubMed ID: 28143409 [TBL] [Abstract][Full Text] [Related]
17. Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads. Martin J; Bruno VM; Fang Z; Meng X; Blow M; Zhang T; Sherlock G; Snyder M; Wang Z BMC Genomics; 2010 Nov; 11():663. PubMed ID: 21106091 [TBL] [Abstract][Full Text] [Related]
18. A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing. Hoang NV; Furtado A; Mason PJ; Marquardt A; Kasirajan L; Thirugnanasambandam PP; Botha FC; Henry RJ BMC Genomics; 2017 May; 18(1):395. PubMed ID: 28532419 [TBL] [Abstract][Full Text] [Related]
19. RNA-Seq Data Analysis Pipeline for Plants: Transcriptome Assembly, Alignment, and Differential Expression Analysis. Burks DJ; Azad RK Methods Mol Biol; 2022; 2396():47-60. PubMed ID: 34786675 [TBL] [Abstract][Full Text] [Related]
20. LSTrAP-denovo: Automated Generation of Transcriptome Atlases for Eukaryotic Species Without Genomes. Lim PK; Wang R; Mutwil M Physiol Plant; 2024; 176(4):e14407. PubMed ID: 38973613 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]