BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

510 related articles for article (PubMed ID: 30452895)

  • 1. Mitochondrial dysfunction induces muscle atrophy during prolonged inactivity: A review of the causes and effects.
    Hyatt H; Deminice R; Yoshihara T; Powers SK
    Arch Biochem Biophys; 2019 Feb; 662():49-60. PubMed ID: 30452895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox Control of Proteolysis During Inactivity-Induced Skeletal Muscle Atrophy.
    Powers SK; Ozdemir M; Hyatt H
    Antioxid Redox Signal; 2020 Sep; 33(8):559-569. PubMed ID: 31941357
    [No Abstract]   [Full Text] [Related]  

  • 3. Mitochondrial signaling contributes to disuse muscle atrophy.
    Powers SK; Wiggs MP; Duarte JA; Zergeroglu AM; Demirel HA
    Am J Physiol Endocrinol Metab; 2012 Jul; 303(1):E31-9. PubMed ID: 22395111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial Bioenergetics and Turnover during Chronic Muscle Disuse.
    Memme JM; Slavin M; Moradi N; Hood DA
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34068411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization-induced activation of key proteolytic systems in skeletal muscles is prevented by a mitochondria-targeted antioxidant.
    Talbert EE; Smuder AJ; Min K; Kwon OS; Szeto HH; Powers SK
    J Appl Physiol (1985); 2013 Aug; 115(4):529-38. PubMed ID: 23766499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial-targeted antioxidants protect skeletal muscle against immobilization-induced muscle atrophy.
    Min K; Smuder AJ; Kwon OS; Kavazis AN; Szeto HH; Powers SK
    J Appl Physiol (1985); 2011 Nov; 111(5):1459-66. PubMed ID: 21817113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative stress and disuse muscle atrophy: cause or consequence?
    Powers SK; Smuder AJ; Judge AR
    Curr Opin Clin Nutr Metab Care; 2012 May; 15(3):240-5. PubMed ID: 22466926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Role of Exercise and TFAM in Preventing Skeletal Muscle Atrophy.
    Theilen NT; Kunkel GH; Tyagi SC
    J Cell Physiol; 2017 Sep; 232(9):2348-2358. PubMed ID: 27966783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can antioxidants protect against disuse muscle atrophy?
    Powers SK
    Sports Med; 2014 Nov; 44 Suppl 2(Suppl 2):S155-65. PubMed ID: 25355189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stress and disuse muscle atrophy.
    Powers SK; Kavazis AN; McClung JM
    J Appl Physiol (1985); 2007 Jun; 102(6):2389-97. PubMed ID: 17289908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of disuse muscle atrophy: role of oxidative stress.
    Powers SK; Kavazis AN; DeRuisseau KC
    Am J Physiol Regul Integr Comp Physiol; 2005 Feb; 288(2):R337-44. PubMed ID: 15637170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox control of skeletal muscle atrophy.
    Powers SK; Morton AB; Ahn B; Smuder AJ
    Free Radic Biol Med; 2016 Sep; 98():208-217. PubMed ID: 26912035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox signaling regulates skeletal muscle remodeling in response to exercise and prolonged inactivity.
    Powers SK; Schrager M
    Redox Biol; 2022 Aug; 54():102374. PubMed ID: 35738088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic links between oxidative stress and disuse muscle atrophy.
    Powers SK; Smuder AJ; Criswell DS
    Antioxid Redox Signal; 2011 Nov; 15(9):2519-28. PubMed ID: 21457104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondria-cytokine crosstalk following skeletal muscle injury and disuse: a mini-review.
    Qualls AE; Southern WM; Call JA
    Am J Physiol Cell Physiol; 2021 May; 320(5):C681-C688. PubMed ID: 33566726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial health and muscle plasticity after spinal cord injury.
    Gorgey AS; Witt O; O'Brien L; Cardozo C; Chen Q; Lesnefsky EJ; Graham ZA
    Eur J Appl Physiol; 2019 Feb; 119(2):315-331. PubMed ID: 30539302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiovasomobility: an integrative understanding of how disuse impacts cardiovascular and skeletal muscle health.
    Trinity JD; Drummond MJ; Fermoyle CC; McKenzie AI; Supiano MA; Richardson RS
    J Appl Physiol (1985); 2022 Mar; 132(3):835-861. PubMed ID: 35112929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of the Mitochondria to Locomotor Muscle Dysfunction in Patients With COPD.
    Taivassalo T; Hussain SN
    Chest; 2016 May; 149(5):1302-12. PubMed ID: 26836890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Role of GSK-3β in the Regulation of Protein Turnover, Myosin Phenotype, and Oxidative Capacity in Skeletal Muscle under Disuse Conditions.
    Mirzoev TM; Sharlo KA; Shenkman BS
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34064895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial Dysfunction Is a Common Denominator Linking Skeletal Muscle Wasting Due to Disease, Aging, and Prolonged Inactivity.
    Hyatt HW; Powers SK
    Antioxidants (Basel); 2021 Apr; 10(4):. PubMed ID: 33920468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.