BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 30452949)

  • 21. [PREPARATION AND BIOCOMPATIBILITY EVALUATION OF A FUNCTIONAL SELF-ASSEMBLING PEPTIDE NANOFIBER HYDROGEL DESIGNED WITH LINKING THE SHORT FUNCTIONAL MOTIF OF BONE MORPHOGENETIC PROTEIN 7].
    Liu L; Wu Y; Tao H; Jia Z; Li X; Wang D; He Q; Ruan D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Apr; 30(4):491-8. PubMed ID: 27411281
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biofunctionalized peptide nanofiber-based composite scaffolds for bone regeneration.
    He B; Zhao J; Ou Y; Jiang D
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():728-738. PubMed ID: 29853144
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nonwoven membranes for tissue engineering: an overview of cartilage, epithelium, and bone regeneration.
    Trevisol TC; Langbehn RK; Battiston S; Immich APS
    J Biomater Sci Polym Ed; 2019 Aug; 30(12):1026-1049. PubMed ID: 31106705
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Smart biomaterials for tissue engineering of cartilage.
    Stoop R
    Injury; 2008 Apr; 39 Suppl 1():S77-87. PubMed ID: 18313475
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controlled growth and differentiation of MSCs on grooved films assembled from monodisperse biological nanofibers with genetically tunable surface chemistries.
    Zhu H; Cao B; Zhen Z; Laxmi AA; Li D; Liu S; Mao C
    Biomaterials; 2011 Jul; 32(21):4744-52. PubMed ID: 21507480
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controlling burst effect with PLA/PVA coaxial electrospun scaffolds loaded with BMP-2 for bone guided regeneration.
    da Silva TN; Gonçalves RP; Rocha CL; Archanjo BS; Barboza CAG; Pierre MBR; Reynaud F; de Souza Picciani PH
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():602-612. PubMed ID: 30678947
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiphasic, Multistructured and Hierarchical Strategies for Cartilage Regeneration.
    Correia CR; Reis RL; Mano JF
    Adv Exp Med Biol; 2015; 881():143-60. PubMed ID: 26545749
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bacteriophages engineered to display foreign peptides may become short-circulating phages.
    Hodyra-Stefaniak K; Lahutta K; Majewska J; Kaźmierczak Z; Lecion D; Harhala M; Kęska W; Owczarek B; Jończyk-Matysiak E; Kłopot A; Miernikiewicz P; Kula D; Górski A; Dąbrowska K
    Microb Biotechnol; 2019 Jul; 12(4):730-741. PubMed ID: 31037835
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent advances in biological macromolecule based tissue-engineered composite scaffolds for cardiac tissue regeneration applications.
    Chandika P; Heo SY; Kim TH; Oh GW; Kim GH; Kim MS; Jung WK
    Int J Biol Macromol; 2020 Dec; 164():2329-2357. PubMed ID: 32795569
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomaterials and stem cells for tissue engineering.
    Zhang Z; Gupte MJ; Ma PX
    Expert Opin Biol Ther; 2013 Apr; 13(4):527-40. PubMed ID: 23327471
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Current Trends in Fabrication of Biomaterials for Bone and Cartilage Regeneration: Materials Modifications and Biophysical Stimulations.
    Przekora A
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30669519
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phage Display to Augment Biomaterial Function.
    Davidson TA; McGoldrick SJ; Kohn DH
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825391
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strategies for Bone Regeneration: From Graft to Tissue Engineering.
    Battafarano G; Rossi M; De Martino V; Marampon F; Borro L; Secinaro A; Del Fattore A
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33498786
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wet-electrospun PHBV nanofiber reinforced carboxymethyl chitosan-silk hydrogel composite scaffolds for articular cartilage repair.
    Gunes OC; Albayrak AZ; Tasdemir S; Sendemir A
    J Biomater Appl; 2020; 35(4-5):515-531. PubMed ID: 32600090
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration.
    Wang Z; Wang Y; Yan J; Zhang K; Lin F; Xiang L; Deng L; Guan Z; Cui W; Zhang H
    Adv Drug Deliv Rev; 2021 Jul; 174():504-534. PubMed ID: 33991588
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering.
    Gao X; Zhang X; Song J; Xu X; Xu A; Wang M; Xie B; Huang E; Deng F; Wei S
    Int J Nanomedicine; 2015; 10():7109-28. PubMed ID: 26604759
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Use of Scaffolds in Cartilage Regeneration.
    Kalkan R; Nwekwo CW; Adali T
    Crit Rev Eukaryot Gene Expr; 2018; 28(4):343-348. PubMed ID: 30311583
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent Strategies Combining Biomaterials and Stem Cells for Bone, Liver and Skin Regeneration.
    Morelli S; Salerno S; Ahmed HM; Piscioneri A; Bartolo L
    Curr Stem Cell Res Ther; 2016; 11(8):676-691. PubMed ID: 26832138
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Applications of chitin and chitosan nanofibers in bone regenerative engineering.
    Tao F; Cheng Y; Shi X; Zheng H; Du Y; Xiang W; Deng H
    Carbohydr Polym; 2020 Feb; 230():115658. PubMed ID: 31887899
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conductive biomaterials for muscle tissue engineering.
    Dong R; Ma PX; Guo B
    Biomaterials; 2020 Jan; 229():119584. PubMed ID: 31704468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.