BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

588 related articles for article (PubMed ID: 30452976)

  • 21. Developing a Three- to Six-State EEG-Based Brain-Computer Interface for a Virtual Robotic Manipulator Control.
    Mishchenko Y; Kaya M; Ozbay E; Yanar H
    IEEE Trans Biomed Eng; 2019 Apr; 66(4):977-987. PubMed ID: 30130168
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Motor Imagery-Based Brain-Computer Interface Coupled to a Robotic Hand Orthosis Aimed for Neurorehabilitation of Stroke Patients.
    Cantillo-Negrete J; Carino-Escobar RI; Carrillo-Mora P; Elias-Vinas D; Gutierrez-Martinez J
    J Healthc Eng; 2018; 2018():1624637. PubMed ID: 29849992
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Performance assessment of a brain-computer interface driven hand orthosis.
    King CE; Dave KR; Wang PT; Mizuta M; Reinkensmeyer DJ; Do AH; Moromugi S; Nenadic Z
    Ann Biomed Eng; 2014 Oct; 42(10):2095-105. PubMed ID: 25012465
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements.
    Kawase T; Sakurada T; Koike Y; Kansaku K
    J Neural Eng; 2017 Feb; 14(1):016015. PubMed ID: 28068293
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rectification of the EMG is an unnecessary and inappropriate step in the calculation of Corticomuscular coherence.
    McClelland VM; Cvetkovic Z; Mills KR
    J Neurosci Methods; 2012 Mar; 205(1):190-201. PubMed ID: 22120690
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses.
    Ramos-Murguialday A; Schürholz M; Caggiano V; Wildgruber M; Caria A; Hammer EM; Halder S; Birbaumer N
    PLoS One; 2012; 7(10):e47048. PubMed ID: 23071707
    [TBL] [Abstract][Full Text] [Related]  

  • 27. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.
    Lawhern VJ; Solon AJ; Waytowich NR; Gordon SM; Hung CP; Lance BJ
    J Neural Eng; 2018 Oct; 15(5):056013. PubMed ID: 29932424
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploring the Use of Brain-Computer Interfaces in Stroke Neurorehabilitation.
    Yang S; Li R; Li H; Xu K; Shi Y; Wang Q; Yang T; Sun X
    Biomed Res Int; 2021; 2021():9967348. PubMed ID: 34239936
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Randomized Controlled Trial of EEG-Based Motor Imagery Brain-Computer Interface Robotic Rehabilitation for Stroke.
    Ang KK; Chua KS; Phua KS; Wang C; Chin ZY; Kuah CW; Low W; Guan C
    Clin EEG Neurosci; 2015 Oct; 46(4):310-20. PubMed ID: 24756025
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Semi-Supervised Progressive Learning Algorithm for Brain-Computer Interface.
    Wei Y; Li J; Ji H; Jin L; Liu L; Bai Z; Ye C
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2067-2076. PubMed ID: 35853068
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Brain-Computer Interface Coupled to a Robotic Hand Orthosis for Stroke Patients' Neurorehabilitation: A Crossover Feasibility Study.
    Cantillo-Negrete J; Carino-Escobar RI; Carrillo-Mora P; Rodriguez-Barragan MA; Hernandez-Arenas C; Quinzaños-Fresnedo J; Hernandez-Sanchez IR; Galicia-Alvarado MA; Miguel-Puga A; Arias-Carrion O
    Front Hum Neurosci; 2021; 15():656975. PubMed ID: 34163342
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of BCI systems in neurorehabilitation: a scoping review.
    Bamdad M; Zarshenas H; Auais MA
    Disabil Rehabil Assist Technol; 2015; 10(5):355-64. PubMed ID: 25560222
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Altered corticomuscular coherence elicited by paced isotonic contractions in individuals with cerebral palsy: a case-control study.
    Riquelme I; Cifre I; Muñoz MA; Montoya P
    J Electromyogr Kinesiol; 2014 Dec; 24(6):928-33. PubMed ID: 25127492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental Pain Decreases Corticomuscular Coherence in a Force- But Not a Position-Control Task.
    Poortvliet PC; Tucker KJ; Finnigan S; Scott D; Hodges PW
    J Pain; 2019 Feb; 20(2):192-200. PubMed ID: 30266268
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the feasibility of using motor imagery EEG-based brain-computer interface in chronic tetraplegics for assistive robotic arm control: a clinical test and long-term post-trial follow-up.
    Onose G; Grozea C; Anghelescu A; Daia C; Sinescu CJ; Ciurea AV; Spircu T; Mirea A; Andone I; Spânu A; Popescu C; Mihăescu AS; Fazli S; Danóczy M; Popescu F
    Spinal Cord; 2012 Aug; 50(8):599-608. PubMed ID: 22410845
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals.
    Zarei R; He J; Siuly S; Zhang Y
    Comput Methods Programs Biomed; 2017 Jul; 146():47-57. PubMed ID: 28688489
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface.
    Siuly ; Li Y; Paul Wen P
    Comput Methods Programs Biomed; 2014 Mar; 113(3):767-80. PubMed ID: 24440135
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel Morse code-inspired method for multiclass motor imagery brain-computer interface (BCI) design.
    Jiang J; Zhou Z; Yin E; Yu Y; Liu Y; Hu D
    Comput Biol Med; 2015 Nov; 66():11-9. PubMed ID: 26340647
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Decision tree structure based classification of EEG signals recorded during two dimensional cursor movement imagery.
    Aydemir O; Kayikcioglu T
    J Neurosci Methods; 2014 May; 229():68-75. PubMed ID: 24751647
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temporally Constrained Sparse Group Spatial Patterns for Motor Imagery BCI.
    Zhang Y; Nam CS; Zhou G; Jin J; Wang X; Cichocki A
    IEEE Trans Cybern; 2019 Sep; 49(9):3322-3332. PubMed ID: 29994667
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.