These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Plasticity of photoreceptor-generating retinal progenitors revealed by prolonged retinoic acid exposure. Stevens CB; Cameron DA; Stenkamp DL BMC Dev Biol; 2011 Aug; 11():51. PubMed ID: 21878117 [TBL] [Abstract][Full Text] [Related]
3. Induction of Rod and Cone Photoreceptor-Specific Progenitors from Stem Cells. Ballios BG; Khalili S; Shoichet MS; van der Kooy D Adv Exp Med Biol; 2019; 1185():551-555. PubMed ID: 31884669 [TBL] [Abstract][Full Text] [Related]
4. Dynamic expression of the basic helix-loop-helix transcription factor neuroD in the rod and cone photoreceptor lineages in the retina of the embryonic and larval zebrafish. Ochocinska MJ; Hitchcock PF J Comp Neurol; 2007 Mar; 501(1):1-12. PubMed ID: 17206615 [TBL] [Abstract][Full Text] [Related]
5. IGF-1 produced by cone photoreceptors regulates rod progenitor proliferation in the teleost retina. Zygar CA; Colbert S; Yang D; Fernald RD Brain Res Dev Brain Res; 2005 Jan; 154(1):91-100. PubMed ID: 15617759 [TBL] [Abstract][Full Text] [Related]
6. The transcription factor Nr2e3 functions in retinal progenitors to suppress cone cell generation. Haider NB; Demarco P; Nystuen AM; Huang X; Smith RS; McCall MA; Naggert JK; Nishina PM Vis Neurosci; 2006; 23(6):917-29. PubMed ID: 17266784 [TBL] [Abstract][Full Text] [Related]
7. Retinoic acid and taurine enhance differentiation of the human bone marrow stem cells into cone photoreceptor cells and retinal ganglion cells. Forouzanfar F; Soleimannejad M; Soltani A; Sadat Mirsafaee P; Asgharzade S J Cell Biochem; 2021 Dec; 122(12):1915-1924. PubMed ID: 34569079 [TBL] [Abstract][Full Text] [Related]
8. Cone mosaic development in the goldfish retina is independent of rod neurogenesis and differentiation. Wan J; Stenkamp DL J Comp Neurol; 2000 Jul; 423(2):227-42. PubMed ID: 10867656 [TBL] [Abstract][Full Text] [Related]
9. Subsets of retinal progenitors display temporally regulated and distinct biases in the fates of their progeny. Alexiades MR; Cepko CL Development; 1997 Mar; 124(6):1119-31. PubMed ID: 9102299 [TBL] [Abstract][Full Text] [Related]
10. NeuroD regulates proliferation of photoreceptor progenitors in the retina of the zebrafish. Ochocinska MJ; Hitchcock PF Mech Dev; 2009; 126(3-4):128-41. PubMed ID: 19121642 [TBL] [Abstract][Full Text] [Related]
11. In vivo function of the orphan nuclear receptor NR2E3 in establishing photoreceptor identity during mammalian retinal development. Cheng H; Aleman TS; Cideciyan AV; Khanna R; Jacobson SG; Swaroop A Hum Mol Genet; 2006 Sep; 15(17):2588-602. PubMed ID: 16868010 [TBL] [Abstract][Full Text] [Related]
12. Targeted effects of retinoic acid signaling upon photoreceptor development in zebrafish. Prabhudesai SN; Cameron DA; Stenkamp DL Dev Biol; 2005 Nov; 287(1):157-67. PubMed ID: 16197938 [TBL] [Abstract][Full Text] [Related]
13. Fate-restricted retinal progenitor cells adopt a molecular profile and spatial position distinct from multipotent progenitor cells. Buenaventura DF; Ghinia-Tegla MG; Emerson MM Dev Biol; 2018 Nov; 443(1):35-49. PubMed ID: 30145104 [TBL] [Abstract][Full Text] [Related]
14. Forkhead box N4 (Foxn4) activates Dll4-Notch signaling to suppress photoreceptor cell fates of early retinal progenitors. Luo H; Jin K; Xie Z; Qiu F; Li S; Zou M; Cai L; Hozumi K; Shima DT; Xiang M Proc Natl Acad Sci U S A; 2012 Feb; 109(9):E553-62. PubMed ID: 22323600 [TBL] [Abstract][Full Text] [Related]
15. Gene expression changes during retinal development and rod specification. Mansergh FC; Carrigan M; Hokamp K; Farrar GJ Mol Vis; 2015; 21():61-87. PubMed ID: 25678762 [TBL] [Abstract][Full Text] [Related]
16. Direct cell fate conversion of human somatic stem cells into cone and rod photoreceptor-like cells by inhibition of microRNA-203. Choi SW; Shin JH; Kim JJ; Shin TH; Seo Y; Kim HS; Kang KS Oncotarget; 2016 Jul; 7(27):42139-42149. PubMed ID: 27283900 [TBL] [Abstract][Full Text] [Related]
17. Foxn4 is a temporal identity factor conferring mid/late-early retinal competence and involved in retinal synaptogenesis. Liu S; Liu X; Li S; Huang X; Qian H; Jin K; Xiang M Proc Natl Acad Sci U S A; 2020 Mar; 117(9):5016-5027. PubMed ID: 32071204 [TBL] [Abstract][Full Text] [Related]
18. The rod photoreceptor lineage of teleost fish. Stenkamp DL Prog Retin Eye Res; 2011 Nov; 30(6):395-404. PubMed ID: 21742053 [TBL] [Abstract][Full Text] [Related]
19. The role of the Rx homeobox gene in retinal progenitor proliferation and cell fate specification. Rodgers HM; Huffman VJ; Voronina VA; Lewandoski M; Mathers PH Mech Dev; 2018 Jun; 151():18-29. PubMed ID: 29665410 [TBL] [Abstract][Full Text] [Related]
20. Single-Cell Transcriptomic Profiling of Human Retinal Organoids Revealed a Role of IGF1-PHLDA1 Axis in Photoreceptor Precursor Specification. Xiao Y; Mao X; Hu X; Yuan S; Chen X; Dai W; Zhang S; Li Y; Chen M; Mao P; Liu Y; Liu Q; Hu Y Invest Ophthalmol Vis Sci; 2022 Nov; 63(12):9. PubMed ID: 36331259 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]