These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 30453259)

  • 1. Footprints from the past: The influence of past human activities on vegetation and soil across five archaeological sites in Greenland.
    Fenger-Nielsen R; Hollesen J; Matthiesen H; Andersen EAS; Westergaard-Nielsen A; Harmsen H; Michelsen A; Elberling B
    Sci Total Environ; 2019 Mar; 654():895-905. PubMed ID: 30453259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vegetation on mesic loamy and sandy soils along a 1700-km maritime Eurasia Arctic Transect.
    Walker DA; Epstein HE; Šibík J; Bhatt U; Romanovsky VE; Breen AL; Chasníková S; Daanen R; Druckenmiller LA; Ermokhina K; Forbes BC; Frost GV; Geml J; Kaärlejarvi E; Khitun O; Khomutov A; Kumpula T; Kuss P; Matyshak G; Moskalenko N; Orekhov P; Peirce J; Raynolds MK; Timling I
    Appl Veg Sci; 2019 Jan; 22(1):150-167. PubMed ID: 31130818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influences of summer warming and nutrient availability on Salix glauca L. growth in Greenland along an ice to sea gradient.
    Prendin AL; Normand S; Carrer M; Bjerregaard Pedersen N; Matthiesen H; Westergaard-Nielsen A; Elberling B; Treier UA; Hollesen J
    Sci Rep; 2022 Feb; 12(1):3077. PubMed ID: 35197470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the loss of organic archaeological deposits at a regional scale in Greenland.
    Hollesen J; Matthiesen H; Fenger-Nielsen R; Abermann J; Westergaard-Nielsen A; Elberling B
    Sci Rep; 2019 Jul; 9(1):9097. PubMed ID: 31296877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biogenic volatile organic compound emissions along a high arctic soil moisture gradient.
    Svendsen SH; Lindwall F; Michelsen A; Rinnan R
    Sci Total Environ; 2016 Dec; 573():131-138. PubMed ID: 27552736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circumpolar arctic tundra biomass and productivity dynamics in response to projected climate change and herbivory.
    Yu Q; Epstein H; Engstrom R; Walker D
    Glob Chang Biol; 2017 Sep; 23(9):3895-3907. PubMed ID: 28276177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal spectral domain selection for maximizing archaeological signatures: Italy case studies.
    Cavalli RM; Pascucci S; Pignatti S
    Sensors (Basel); 2009; 9(3):1754-67. PubMed ID: 22573985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climate change and the loss of organic archaeological deposits in the Arctic.
    Hollesen J; Matthiesen H; Møller AB; Westergaard-Nielsen A; Elberling B
    Sci Rep; 2016 Jun; 6():28690. PubMed ID: 27356878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The soil biota composition along a progressive succession of secondary vegetation in a karst area.
    Zhao J; Li S; He X; Liu L; Wang K
    PLoS One; 2014; 9(11):e112436. PubMed ID: 25379741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UAV reveals substantial but heterogeneous effects of herbivores on Arctic vegetation.
    Siewert MB; Olofsson J
    Sci Rep; 2021 Sep; 11(1):19468. PubMed ID: 34593844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites.
    Maynard JJ; Karl JW
    PLoS One; 2017; 12(4):e0175201. PubMed ID: 28414731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of understory vegetation on soil carbon and nitrogen dynamic in aerially seeded Pinus massoniana plantations.
    Pan P; Zhao F; Ning J; Zhang L; Ouyang X; Zang H
    PLoS One; 2018; 13(1):e0191952. PubMed ID: 29377926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between herbivory and warming in aboveground biomass production of arctic vegetation.
    Pedersen C; Post E
    BMC Ecol; 2008 Oct; 8():17. PubMed ID: 18945359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plants as bioindicators for archaeological prospection: a case of study from Domitian's Stadium in the Palatine (Rome, Italy).
    Ceschin S; Caneva G
    Environ Monit Assess; 2013 Jun; 185(6):5317-26. PubMed ID: 23114916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sympatric soil biota mitigate a warmer-drier climate for Bouteloua gracilis.
    Remke MJ; Johnson NC; Bowker MA
    Glob Chang Biol; 2022 Nov; 28(21):6280-6292. PubMed ID: 36038989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecosystem responses to climate change at a Low Arctic and a High Arctic long-term research site.
    Hobbie JE; Shaver GR; Rastetter EB; Cherry JE; Goetz SJ; Guay KC; Gould WA; Kling GW
    Ambio; 2017 Feb; 46(Suppl 1):160-173. PubMed ID: 28116685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fungal attack on archaeological wooden artefacts in the Arctic-implications in a changing climate.
    Pedersen NB; Matthiesen H; Blanchette RA; Alfredsen G; Held BW; Westergaard-Nielsen A; Hollesen J
    Sci Rep; 2020 Sep; 10(1):14577. PubMed ID: 32884059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of satellite remote sensing as a monitoring tool for land and water resources development activities in an Indian tropical site.
    Behera MD; Gupta AK; Barik SK; Das P; Panda RM
    Environ Monit Assess; 2018 Jun; 190(7):401. PubMed ID: 29904796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transitions in high-Arctic vegetation growth patterns and ecosystem productivity tracked with automated cameras from 2000 to 2013.
    Westergaard-Nielsen A; Lund M; Pedersen SH; Schmidt NM; Klosterman S; Abermann J; Hansen BU
    Ambio; 2017 Feb; 46(Suppl 1):39-52. PubMed ID: 28116683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Pheno-climatic profiles of vegetation based on multitemporal analysis of satellite data].
    Taddei R
    Parassitologia; 2004 Jun; 46(1-2):63-6. PubMed ID: 15305688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.