These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 30453536)

  • 1. Monolithic Multi Degree of Freedom (MDoF) Capacitive MEMS Accelerometers.
    Mohammed Z; Elfadel IAM; Rasras M
    Micromachines (Basel); 2018 Nov; 9(11):. PubMed ID: 30453536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A polymeric piezoelectric MEMS accelerometer with high sensitivity, low noise density, and an innovative manufacturing approach.
    Ge C; Cretu E
    Microsyst Nanoeng; 2023; 9():151. PubMed ID: 38033989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple-Degree-of-Freedom Modeling and Simulation for Seismic-Grade Sigma-Delta MEMS Capacitive Accelerometers.
    Wang X; Zhang P; Ding S
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gyro-Free Inertial Navigation Systems Based on Linear Opto-Mechanical Accelerometers.
    Sanjuan J; Sinyukov A; Warrayat MF; Guzman F
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, fabrication, and testing of a bulk micromachined inertial measurement unit.
    Chang H; Shen Q; Zhou Z; Xie J; Jiang Q; Yuan W
    Sensors (Basel); 2010; 10(4):3835-56. PubMed ID: 22319329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Fabrication Method for a Capacitive MEMS Accelerometer Based on Glass-Silicon Composite Wafers.
    He Y; Si C; Han G; Zhao Y; Ning J; Yang F
    Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33494437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micromachined Fluid Inertial Sensors.
    Liu S; Zhu R
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28216569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Capacitive 3-Axis MEMS Accelerometer for Medipost: A Portable System Dedicated to Monitoring Imbalance Disorders.
    Szermer M; Zając P; Amrozik P; Maj C; Jankowski M; Jabłoński G; Kiełbik R; Nazdrowicz J; Napieralska M; Sakowicz B
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34065449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A wafer level vacuum encapsulated capacitive accelerometer fabricated in an unmodified commercial MEMS process.
    Merdassi A; Yang P; Chodavarapu VP
    Sensors (Basel); 2015 Mar; 15(4):7349-59. PubMed ID: 25815451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Tri-Axial Piezoelectric MEMS Accelerometer with Folded Beams.
    Liu Y; Hu B; Cai Y; Liu W; Tovstopyat A; Sun C
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33440659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An aerosol deposition based MEMS piezoelectric accelerometer for low noise measurement.
    Gong X; Kuo YC; Zhou G; Wu WJ; Liao WH
    Microsyst Nanoeng; 2023; 9():23. PubMed ID: 36890847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An all-silicon single-wafer micro-g accelerometer with a combined surface and bulk micromachining process.
    Yazdi N; Najafi K
    J Microelectromech Syst; 2000 Dec; 9(4):544-50. PubMed ID: 12194180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Capacitive Sensing System Design of a Microelectromechanical Systems Accelerometer for Gravity Measurement Applications.
    Li Z; Wu WJ; Zheng PP; Liu JQ; Fan J; Tu LC
    Micromachines (Basel); 2016 Sep; 7(9):. PubMed ID: 30404340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Programmable Low-Power Low-Noise Capacitance to Voltage Converter for MEMS Accelerometers.
    Royo G; Sánchez-Azqueta C; Gimeno C; Aldea C; Celma S
    Sensors (Basel); 2016 Dec; 17(1):. PubMed ID: 28042830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MEMS Inertial Sensor Calibration Technology: Current Status and Future Trends.
    Ru X; Gu N; Shang H; Zhang H
    Micromachines (Basel); 2022 May; 13(6):. PubMed ID: 35744491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, Fabrication, and Testing of a Monolithically Integrated Tri-Axis High-Shock Accelerometer in Single (111)-Silicon Wafer.
    Cai S; Li W; Zou H; Bao H; Zhang K; Wang J; Song Z; Li X
    Micromachines (Basel); 2019 Mar; 10(4):. PubMed ID: 30934908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time- and computation-efficient calibration of MEMS 3D accelerometers and gyroscopes.
    Stančin S; Tomažič S
    Sensors (Basel); 2014 Aug; 14(8):14885-915. PubMed ID: 25123469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the Diagnostic Sensitivity of Digital Vibration Sensors Based on Capacitive MEMS Accelerometers.
    Fidali M; Augustyn D; Ochmann J; Uchman W
    Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39065860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Review of the Capacitive MEMS for Seismology.
    D'Alessandro A; Scudero S; Vitale G
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31336990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A MEMS Micro-g Capacitive Accelerometer Based on Through-Silicon-Wafer-Etching Process.
    Rao K; Wei X; Zhang S; Zhang M; Hu C; Liu H; Tu LC
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31181589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.