These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30453600)

  • 41. A comparative study of the effect of α-, β-, and γ-cyclodextrins as stabilizing agents in the synthesis of silver nanoparticles using a green chemistry method.
    Suárez-Cerda J; Nuñez GA; Espinoza-Gómez H; Flores-López LZ
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():21-6. PubMed ID: 25175183
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sputtered bismuth screen-printed electrode: a promising alternative to other bismuth modifications in the voltammetric determination of Cd(II) and Pb(II) ions in groundwater.
    Sosa V; Serrano N; Ariño C; Díaz-Cruz JM; Esteban M
    Talanta; 2014 Feb; 119():348-52. PubMed ID: 24401424
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of bimetallic Fe/Pd nanoparticles by grape leaf aqueous extract and identification of active biomolecules involved in the synthesis.
    Luo F; Yang D; Chen Z; Megharaj M; Naidu R
    Sci Total Environ; 2016 Aug; 562():526-532. PubMed ID: 27110966
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cyclic Voltammetry of Screen-Printed Carbon Electrode Coated with Ag-ZnO Nanoparticles in Chitosan Matrix.
    Herbei EE; Alexandru P; Busila M
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37110102
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Determination of Zinc, Cadmium, Lead, Copper and Silver Using a Carbon Paste Electrode and a Screen Printed Electrode Modified with Chromium(III) Oxide.
    Koudelkova Z; Syrovy T; Ambrozova P; Moravec Z; Kubac L; Hynek D; Richtera L; Adam V
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28792450
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities.
    Gopinath K; Kumaraguru S; Bhakyaraj K; Mohan S; Venkatesh KS; Esakkirajan M; Kaleeswarran P; Alharbi NS; Kadaikunnan S; Govindarajan M; Benelli G; Arumugam A
    Microb Pathog; 2016 Dec; 101():1-11. PubMed ID: 27765621
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Larvicidal activity of green synthesized silver nanoparticles using bark aqueous extract of Ficus racemosa against Culex quinquefasciatus and Culex gelidus.
    Velayutham K; Rahuman AA; Rajakumar G; Roopan SM; Elango G; Kamaraj C; Marimuthu S; Santhoshkumar T; Iyappan M; Siva C
    Asian Pac J Trop Med; 2013 Feb; 6(2):95-101. PubMed ID: 23339909
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Simultaneous voltammetric determination of cadmium(II), lead(II), mercury(II), zinc(II), and copper(II) using a glassy carbon electrode modified with magnetite (Fe
    Wu W; Jia M; Wang Z; Zhang W; Zhang Q; Liu G; Zhang Z; Li P
    Mikrochim Acta; 2019 Jan; 186(2):97. PubMed ID: 30631955
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stable antibacterial silver nanoparticles produced with seed-derived callus extract of Catharanthus roseus.
    Osibe DA; Chiejina NV; Ogawa K; Aoyagi H
    Artif Cells Nanomed Biotechnol; 2018 Sep; 46(6):1266-1273. PubMed ID: 28830244
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature.
    Sadeghi B; Gholamhoseinpoor F
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():310-5. PubMed ID: 25022503
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Completely green synthesis of dextrose reduced silver nanoparticles, its antimicrobial and sensing properties.
    Mohan S; Oluwafemi OS; George SC; Jayachandran VP; Lewu FB; Songca SP; Kalarikkal N; Thomas S
    Carbohydr Polym; 2014 Jun; 106():469-74. PubMed ID: 24721103
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Floral waste synthesized silver nanoparticles as sensor for Cr (VI) ion detection.
    Ashraf I; Agarwal A; Singh NB; Ray MB
    Environ Monit Assess; 2023 May; 195(6):671. PubMed ID: 37184624
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plant-Mediated Synthesis of Silver Nanoparticles and Their Stabilization by Wet Stirred Media Milling.
    Baláž M; Balážová Ľ; Daneu N; Dutková E; Balážová M; Bujňáková Z; Shpotyuk Y
    Nanoscale Res Lett; 2017 Dec; 12(1):83. PubMed ID: 28144916
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biosynthesized silver nanoparticles using floral extract of Chrysanthemum indicum L.--potential for malaria vector control.
    Arokiyaraj S; Dinesh Kumar V; Elakya V; Kamala T; Park SK; Ragam M; Saravanan M; Bououdina M; Arasu MV; Kovendan K; Vincent S
    Environ Sci Pollut Res Int; 2015 Jul; 22(13):9759-65. PubMed ID: 25637241
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Controllable biogenic synthesis of intracellular silver/silver chloride nanoparticles by
    Alamri SAM; Hashem M; Nafady NA; Sayed MA; Alshehri AM; El-Alshaboury GA
    J Microbiol Biotechnol; 2018 Jun; 28(6):917-930. PubMed ID: 29847861
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Green synthesis of silver nanoparticles using cranberry powder aqueous extract: characterization and antimicrobial properties.
    Ashour AA; Raafat D; El-Gowelli HM; El-Kamel AH
    Int J Nanomedicine; 2015; 10():7207-21. PubMed ID: 26664112
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Low-cost and eco-friendly green synthesis of silver nanoparticles using Prunus japonica (Rosaceae) leaf extract and their antibacterial, antioxidant properties.
    Saravanakumar A; Peng MM; Ganesh M; Jayaprakash J; Mohankumar M; Jang HT
    Artif Cells Nanomed Biotechnol; 2017 Sep; 45(6):1-7. PubMed ID: 27396523
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biofabrication of Ag nanoparticles using Sterculia foetida L. seed extract and their toxic potential against mosquito vectors and HeLa cancer cells.
    Rajasekharreddy P; Rani PU
    Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():203-12. PubMed ID: 24863217
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biosynthesis, characterization and antibacterial studies of silver nanoparticles using pods extract of Acacia auriculiformis.
    Nalawade P; Mukherjee P; Kapoor S
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Aug; 129():121-4. PubMed ID: 24727170
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Antioxidant and catalytic applications of silver nanoparticles using Dimocarpus longan seed extract as a reducing and stabilizing agent.
    Khan FU; Chen Y; Khan NU; Khan ZU; Khan AU; Ahmad A; Tahir K; Wang L; Khan MR; Wan P
    J Photochem Photobiol B; 2016 Nov; 164():344-351. PubMed ID: 27723492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.