These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
659 related articles for article (PubMed ID: 30453885)
1. SVM-RFE: selection and visualization of the most relevant features through non-linear kernels. Sanz H; Valim C; Vegas E; Oller JM; Reverter F BMC Bioinformatics; 2018 Nov; 19(1):432. PubMed ID: 30453885 [TBL] [Abstract][Full Text] [Related]
2. Selecting Feature Subsets Based on SVM-RFE and the Overlapping Ratio with Applications in Bioinformatics. Lin X; Li C; Zhang Y; Su B; Fan M; Wei H Molecules; 2017 Dec; 23(1):. PubMed ID: 29278382 [TBL] [Abstract][Full Text] [Related]
3. An Efficient Feature Selection Strategy Based on Multiple Support Vector Machine Technology with Gene Expression Data. Zhang Y; Deng Q; Liang W; Zou X Biomed Res Int; 2018; 2018():7538204. PubMed ID: 30228989 [TBL] [Abstract][Full Text] [Related]
4. Development of two-stage SVM-RFE gene selection strategy for microarray expression data analysis. Tang Y; Zhang YQ; Huang Z IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(3):365-81. PubMed ID: 17666757 [TBL] [Abstract][Full Text] [Related]
5. Recursive gene selection based on maximum margin criterion: a comparison with SVM-RFE. Niijima S; Kuhara S BMC Bioinformatics; 2006 Dec; 7():543. PubMed ID: 17187691 [TBL] [Abstract][Full Text] [Related]
6. Tuning to optimize SVM approach for assisting ovarian cancer diagnosis with photoacoustic imaging. Wang R; Li R; Lei Y; Zhu Q Biomed Mater Eng; 2015; 26 Suppl 1():S975-81. PubMed ID: 26406101 [TBL] [Abstract][Full Text] [Related]
7. A support vector machine-recursive feature elimination feature selection method based on artificial contrast variables and mutual information. Lin X; Yang F; Zhou L; Yin P; Kong H; Xing W; Lu X; Jia L; Wang Q; Xu G J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Dec; 910():149-55. PubMed ID: 22682888 [TBL] [Abstract][Full Text] [Related]
8. Ensemble Feature Learning of Genomic Data Using Support Vector Machine. Anaissi A; Goyal M; Catchpoole DR; Braytee A; Kennedy PJ PLoS One; 2016; 11(6):e0157330. PubMed ID: 27304923 [TBL] [Abstract][Full Text] [Related]
9. Recursive Support Vector Machine Biomarker Selection for Alzheimer's Disease. Zhang F; Petersen M; Johnson L; Hall J; O'Bryant SE J Alzheimers Dis; 2021; 79(4):1691-1700. PubMed ID: 33492292 [TBL] [Abstract][Full Text] [Related]
10. An efficient model selection for linear discriminant function-based recursive feature elimination. Ding X; Yang F; Ma F J Biomed Inform; 2022 May; 129():104070. PubMed ID: 35436594 [TBL] [Abstract][Full Text] [Related]
11. MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data. Zhou X; Tuck DP Bioinformatics; 2007 May; 23(9):1106-14. PubMed ID: 17494773 [TBL] [Abstract][Full Text] [Related]
12. NCC-AUC: an AUC optimization method to identify multi-biomarker panel for cancer prognosis from genomic and clinical data. Zou M; Liu Z; Zhang XS; Wang Y Bioinformatics; 2015 Oct; 31(20):3330-8. PubMed ID: 26092859 [TBL] [Abstract][Full Text] [Related]
13. Enhancing SVM for survival data using local invariances and weighting. Sanz H; Reverter F; Valim C BMC Bioinformatics; 2020 May; 21(1):193. PubMed ID: 32429884 [TBL] [Abstract][Full Text] [Related]
14. Improving the performance of SVM-RFE to select genes in microarray data. Ding Y; Wilkins D BMC Bioinformatics; 2006 Sep; 7 Suppl 2(Suppl 2):S12. PubMed ID: 17118133 [TBL] [Abstract][Full Text] [Related]
15. SVM-T-RFE: a novel gene selection algorithm for identifying metastasis-related genes in colorectal cancer using gene expression profiles. Li X; Peng S; Chen J; Lü B; Zhang H; Lai M Biochem Biophys Res Commun; 2012 Mar; 419(2):148-53. PubMed ID: 22306013 [TBL] [Abstract][Full Text] [Related]
16. An efficient alpha seeding method for optimized extreme learning machine-based feature selection algorithm. Ding X; Yang F; Jin S; Cao J Comput Biol Med; 2021 Jul; 134():104505. PubMed ID: 34102404 [TBL] [Abstract][Full Text] [Related]
17. AdaBoost-based multiple SVM-RFE for classification of mammograms in DDSM. Yoon S; Kim S BMC Med Inform Decis Mak; 2009 Nov; 9 Suppl 1(Suppl 1):S1. PubMed ID: 19891795 [TBL] [Abstract][Full Text] [Related]
18. Multiple SVM-RFE for gene selection in cancer classification with expression data. Duan KB; Rajapakse JC; Wang H; Azuaje F IEEE Trans Nanobioscience; 2005 Sep; 4(3):228-34. PubMed ID: 16220686 [TBL] [Abstract][Full Text] [Related]
19. Recursive cluster elimination (RCE) for classification and feature selection from gene expression data. Yousef M; Jung S; Showe LC; Showe MK BMC Bioinformatics; 2007 May; 8():144. PubMed ID: 17474999 [TBL] [Abstract][Full Text] [Related]