These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 30454569)
1. Retention characteristics of some antibiotic and anti-retroviral compounds in hydrophilic interaction chromatography using isocratic elution, and gradient elution with repeatable partial equilibration. Heaton JC; Smith NW; McCalley DV Anal Chim Acta; 2019 Jan; 1045():141-151. PubMed ID: 30454569 [TBL] [Abstract][Full Text] [Related]
2. A study of the re-equilibration of hydrophilic interaction columns with a focus on viability for use in two-dimensional liquid chromatography. Seidl C; Bell DS; Stoll DR J Chromatogr A; 2019 Oct; 1604():460484. PubMed ID: 31488293 [TBL] [Abstract][Full Text] [Related]
3. A study of column equilibration time in hydrophilic interaction chromatography. McCalley DV J Chromatogr A; 2018 Jun; 1554():61-70. PubMed ID: 29706400 [TBL] [Abstract][Full Text] [Related]
4. Managing the column equilibration time in hydrophilic interaction chromatography. McCalley DV J Chromatogr A; 2020 Feb; 1612():460655. PubMed ID: 31679709 [TBL] [Abstract][Full Text] [Related]
5. Study of retention and peak shape in hydrophilic interaction chromatography over a wide pH range. McCalley DV J Chromatogr A; 2015 Sep; 1411():41-9. PubMed ID: 26275863 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of a mixed-model stationary phase derived from glutamine for HPLC separation of structurally different biologically active compounds: HILIC and reversed-phase applications. Aral T; Aral H; Ziyadanoğulları B; Ziyadanoğulları R Talanta; 2015 Jan; 131():64-73. PubMed ID: 25281074 [TBL] [Abstract][Full Text] [Related]
7. Retention and selectivity effects caused by bonding of a polar urea-type ligand to silica: a study on mixed-mode retention mechanisms and the pivotal role of solute-silanol interactions in the hydrophilic interaction chromatography elution mode. Bicker W; Wu J; Yeman H; Albert K; Lindner W J Chromatogr A; 2011 Feb; 1218(7):882-95. PubMed ID: 21067765 [TBL] [Abstract][Full Text] [Related]
8. Zwitterionic silica-based monolithic capillary columns for isocratic and gradient hydrophilic interaction liquid chromatography. Moravcová D; Planeta J; Kahle V; Roth M J Chromatogr A; 2012 Dec; 1270():178-85. PubMed ID: 23201004 [TBL] [Abstract][Full Text] [Related]
9. Retention and mass transfer properties of the series of unbonded, amide-bonded, and alkylsulfobetaine-bonded ethylene bridged hybrid hydrophilic interaction liquid chromatography columns. Gritti F; Alden BA; McLaughlin J; Walter TH J Chromatogr A; 2023 Mar; 1692():463828. PubMed ID: 36804802 [TBL] [Abstract][Full Text] [Related]
10. Hydrophilic interaction chromatography of seized drugs and related compounds with sub 2 μm particle columns. Lurie IS; Li L; Toske SG J Chromatogr A; 2011 Dec; 1218(52):9336-44. PubMed ID: 22098930 [TBL] [Abstract][Full Text] [Related]
11. Hydrophilic interaction chromatography coupled to tandem mass spectrometry in the presence of hydrophilic ion-pairing reagents for the separation of nucleosides and nucleotide mono-, di- and triphosphates. Mateos-Vivas M; Rodríguez-Gonzalo E; García-Gómez D; Carabias-Martínez R J Chromatogr A; 2015 Oct; 1414():129-37. PubMed ID: 26341591 [TBL] [Abstract][Full Text] [Related]
12. Effect of mobile phase additives on solute retention at low aqueous pH in hydrophilic interaction liquid chromatography. McCalley DV J Chromatogr A; 2017 Feb; 1483():71-79. PubMed ID: 28069167 [TBL] [Abstract][Full Text] [Related]
13. Monolithic stationary phases with incorporated fumed silica nanoparticles. Part I. Polymethacrylate-based monolithic column with incorporated bare fumed silica nanoparticles for hydrophilic interaction liquid chromatography. Aydoğan C; El Rassi Z J Chromatogr A; 2016 May; 1445():55-61. PubMed ID: 27059399 [TBL] [Abstract][Full Text] [Related]
14. Retention behaviour of imidazolium ionic liquid cations on 1.7 μm ethylene bridged hybrid silica column using acetonitrile-rich and water-rich mobile phases. Orentienė A; Olšauskaitė V; Vičkačkaitė V; Padarauskas A J Chromatogr A; 2011 Sep; 1218(39):6884-91. PubMed ID: 21871632 [TBL] [Abstract][Full Text] [Related]
15. Is hydrophilic interaction chromatography with silica columns a viable alternative to reversed-phase liquid chromatography for the analysis of ionisable compounds? McCalley DV J Chromatogr A; 2007 Nov; 1171(1-2):46-55. PubMed ID: 17931636 [TBL] [Abstract][Full Text] [Related]
16. Comparison of peak shape in hydrophilic interaction chromatography using acidic salt buffers and simple acid solutions. Heaton JC; Russell JJ; Underwood T; Boughtflower R; McCalley DV J Chromatogr A; 2014 Jun; 1347():39-48. PubMed ID: 24813934 [TBL] [Abstract][Full Text] [Related]
17. Characterization and use of hydrophilic interaction liquid chromatography type stationary phases in supercritical fluid chromatography. West C; Khater S; Lesellier E J Chromatogr A; 2012 Aug; 1250():182-95. PubMed ID: 22647190 [TBL] [Abstract][Full Text] [Related]
18. Synthesis, characterization, and application of a novel multifunctional stationary phase for hydrophilic interaction/reversed phase mixed-mode chromatography. Aral H; Çelik KS; Altındağ R; Aral T Talanta; 2017 Nov; 174():703-714. PubMed ID: 28738646 [TBL] [Abstract][Full Text] [Related]
19. Hydrophilic interaction liquid chromatography in the separation of a moderately lipophilic drug from its highly polar metabolites--the cardioprotectant dexrazoxane as a model case. Kovaříková P; Stariat J; Klimeš J; Hrušková K; Vávrová K J Chromatogr A; 2011 Jan; 1218(3):416-26. PubMed ID: 21168142 [TBL] [Abstract][Full Text] [Related]
20. Peptide retention time prediction in hydrophilic interaction liquid chromatography. Comparison of separation selectivity between bare silica and bonded stationary phases. Spicer V; Krokhin OV J Chromatogr A; 2018 Jan; 1534():75-84. PubMed ID: 29306631 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]