BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 30454656)

  • 1. Genome sequence and comparative genomics of Rhizobium sp. Td3, a novel plant growth promoting phosphate solubilizing Cajanus cajan symbiont.
    Iyer B; Rajkumar S
    Microbiol Res; 2019 Jan; 218():32-40. PubMed ID: 30454656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Succinate irrepressible periplasmic glucose dehydrogenase of Rhizobium sp. Td3 and SN1 contributes to its phosphate solubilization ability.
    Iyer B; Rajkumar S
    Arch Microbiol; 2019 Jul; 201(5):649-659. PubMed ID: 30783703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retraction notice to "Genome sequence and comparative genomics of Rhizobium sp. Td3, a novel plant growth promoting phosphate solubilizing Cajanus cajan symbiont" [Microbiological Research 218 (2019) 32-40].
    Iyer B; Rajkumar S
    Microbiol Res; 2019 Apr; 221():70. PubMed ID: 30825943
    [No Abstract]   [Full Text] [Related]  

  • 4. Enhanced growth and nodulation of pigeon pea by co-inoculation of Bacillus strains with Rhizobium spp.
    Rajendran G; Sing F; Desai AJ; Archana G
    Bioresour Technol; 2008 Jul; 99(11):4544-50. PubMed ID: 17826983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic insights into plant growth promoting rhizobia capable of enhancing soybean germination under drought stress.
    Igiehon NO; Babalola OO; Aremu BR
    BMC Microbiol; 2019 Jul; 19(1):159. PubMed ID: 31296165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose and arabinose dependent mineral phosphate solubilization and its succinate-mediated catabolite repression in Rhizobium sp. RM and RS.
    Joshi E; Iyer B; Rajkumar S
    J Biosci Bioeng; 2019 Nov; 128(5):551-557. PubMed ID: 31147219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphate-solubilization mechanism and in vitro plant growth promotion activity mediated by Pantoea eucalypti isolated from Lotus tenuis rhizosphere in the Salado River Basin (Argentina).
    Castagno LN; Estrella MJ; Sannazzaro AI; Grassano AE; Ruiz OA
    J Appl Microbiol; 2011 May; 110(5):1151-65. PubMed ID: 21299771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Root colonization by heavy metal resistant Enterobacter and its influence on metal induced oxidative stress on Cajanus cajan.
    Sharma RK; Barot K; Archana G
    J Sci Food Agric; 2020 Mar; 100(4):1532-1540. PubMed ID: 31769023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil.
    Abd-Alla MH; El-Enany AW; Nafady NA; Khalaf DM; Morsy FM
    Microbiol Res; 2014 Jan; 169(1):49-58. PubMed ID: 23920230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional expression of Escherichia coli fhuA gene in Rhizobium spp. of Cajanus cajan provides growth advantage in presence of Fe3+: ferrichrome as iron source.
    Rajendran G; Mistry S; Desai AJ; Archana G
    Arch Microbiol; 2007 Apr; 187(4):257-64. PubMed ID: 17136381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub, Cajanus cajan.
    Datta C; Basu PS
    Microbiol Res; 2000 Jul; 155(2):123-7. PubMed ID: 10950195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of succinate on phosphate solubilization in nitrogen fixing bacteria harbouring chick pea and their effect on plant growth.
    Iyer B; Rajput MS; Rajkumar S
    Microbiol Res; 2017 Sep; 202():43-50. PubMed ID: 28647122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First genomic analysis of the broad-host-range Rhizobium sp. LPU83 strain, a member of the low-genetic diversity Oregon-like Rhizobium sp. group.
    Tejerizo GT; Del Papa MF; Draghi W; Lozano M; Giusti Mde L; Martini C; Salas ME; Salto I; Wibberg D; Szczepanowski R; Weidner S; Schlüter A; Lagares A; Pistorio M
    J Biotechnol; 2011 Aug; 155(1):3-10. PubMed ID: 21329739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations of Primary Metabolites in Root Exudates of Intercropped Cajanus cajan-Zea mays Modulate the Adaptation and Proteome of Ensifer (Sinorhizobium) fredii NGR234.
    Vora SM; Ankati S; Patole C; Podile AR; Archana G
    Microb Ecol; 2022 May; 83(4):1008-1025. PubMed ID: 34351469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering the potential of a plant growth promoting endophyte
    Huang X; Zeng Z; Chen Z; Tong X; Jiang J; He C; Xiang T
    Front Microbiol; 2022; 13():1035167. PubMed ID: 36406393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioformulation of Burkholderia sp. MSSP with a multispecies consortium for growth promotion of Cajanus cajan.
    Pandey P; Maheshwari DK
    Can J Microbiol; 2007 Feb; 53(2):213-22. PubMed ID: 17496969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-Guided Insights into the Plant Growth Promotion Capabilities of the Physiologically Versatile
    Bhattacharyya C; Bakshi U; Mallick I; Mukherji S; Bera B; Ghosh A
    Front Microbiol; 2017; 8():411. PubMed ID: 28377746
    [No Abstract]   [Full Text] [Related]  

  • 18. Genetic diversity and community structure of rhizobia nodulating Sesbania cannabina in saline-alkaline soils.
    Li Y; Li X; Liu Y; Wang ET; Ren C; Liu W; Xu H; Wu H; Jiang N; Li Y; Zhang X; Xie Z
    Syst Appl Microbiol; 2016 May; 39(3):195-202. PubMed ID: 27061259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic Analysis of
    Wang L; Zhou F; Zhou J; Harvey PR; Yu H; Zhang G; Zhang X
    Genes (Basel); 2022 Dec; 13(12):. PubMed ID: 36553557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 isolated from ginseng rhizosphere and its plant growth-promoting activities.
    Park KH; Lee CY; Son HJ
    Lett Appl Microbiol; 2009 Aug; 49(2):222-8. PubMed ID: 19486289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.