These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
314 related articles for article (PubMed ID: 30455005)
81. Assessing fly ash treatment: remediation and stabilization of heavy metals. Lima AT; Ottosen LM; Ribeiro AB J Environ Manage; 2012 Mar; 95 Suppl():S110-5. PubMed ID: 21167631 [TBL] [Abstract][Full Text] [Related]
82. Leaching behaviour of municipal solid waste incineration bottom ash: From granular material to monolithic concrete. Sorlini S; Collivignarelli MC; Abbà A Waste Manag Res; 2017 Sep; 35(9):978-990. PubMed ID: 28732454 [TBL] [Abstract][Full Text] [Related]
83. Heavy metal migration during electroremediation of fly ash from different wastes--modelling. Lima AT; Rodrigues PC; Mexia JT J Hazard Mater; 2010 Mar; 175(1-3):366-71. PubMed ID: 19883974 [TBL] [Abstract][Full Text] [Related]
84. Leaching test procedure for assessing the compliance of the chemical and environmental requirements of hardened woody biomass fly ash cement mixtures. Berra M; Ippolito NM; Mangialardi T; Paolini AE; Piga L Waste Manag; 2019 May; 90():10-16. PubMed ID: 31088665 [TBL] [Abstract][Full Text] [Related]
85. [Novel process utilizing alkalis assisted hydrothermal process to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water]. Wang L; Jin J; Li XD; Chi Y; Yan JH Huan Jing Ke Xue; 2010 Aug; 31(8):1973-80. PubMed ID: 21090322 [TBL] [Abstract][Full Text] [Related]
86. The Evaluation of the Heavy Metal Leaching Behavior of MSWI-FA Added Alkali-Activated Materials Bricks by Using Different Leaching Test Methods. Xu P; Zhao Q; Qiu W; Xue Y Int J Environ Res Public Health; 2019 Mar; 16(7):. PubMed ID: 30935069 [TBL] [Abstract][Full Text] [Related]
87. Metal leachability, heavy metals, polycyclic aromatic hydrocarbons and polychlorinated biphenyls in fly and bottom ashes of a medical waste incineration facility. Valavanidis A; Iliopoulos N; Fiotakis K; Gotsis G Waste Manag Res; 2008 Jun; 26(3):247-55. PubMed ID: 18649572 [TBL] [Abstract][Full Text] [Related]
88. Extraction of heavy metals from MSW incinerator fly ash using saponins. Hong KJ; Tokunaga S; Ishigami Y; Kajiuchi T Chemosphere; 2000 Aug; 41(3):345-52. PubMed ID: 11057596 [TBL] [Abstract][Full Text] [Related]
89. Mechanochemical stabilization of heavy metals in fly ash from coal-fired power plants via dry milling and wet milling. Yuan Q; Zhang Y; Wang T; Wang J; Romero CE Waste Manag; 2021 Nov; 135():428-436. PubMed ID: 34619624 [TBL] [Abstract][Full Text] [Related]
90. Removal of heavy metals from fly ash using electrodialysis driven by a bioelectrochemical system: a case study of Pb, Mn, Cu and Cd. Zha F; Wang S; Liu Z; Dai J; Yue S; Qi W; Xue X; Wang X; Zhang S Environ Technol; 2024 Jun; 45(14):2709-2720. PubMed ID: 36847577 [TBL] [Abstract][Full Text] [Related]
91. Geochemically structural characteristics of municipal solid waste incineration fly ash particles and mineralogical surface conversions by chelate treatment. Kitamura H; Sawada T; Shimaoka T; Takahashi F Environ Sci Pollut Res Int; 2016 Jan; 23(1):734-43. PubMed ID: 26336844 [TBL] [Abstract][Full Text] [Related]
92. [Influence of fly ash concentrations on the growth of Aspergillus niger and the bioleaching efficiency of heavy metals]. Yang J; Wang QH; Wang Q; Xue J; Tian SL Huan Jing Ke Xue; 2008 Mar; 29(3):825-30. PubMed ID: 18649552 [TBL] [Abstract][Full Text] [Related]
93. Comparison of CaO's effect on the fate of heavy metals during thermal treatment of two typical types of MSWI fly ashes in China. Hu HY; Liu H; Shen WQ; Luo GQ; Li AJ; Lu ZL; Yao H Chemosphere; 2013 Oct; 93(4):590-6. PubMed ID: 23800595 [TBL] [Abstract][Full Text] [Related]
94. Immobilization of trace heavy metals in the electrokinetics-processed municipal solid waste incineration fly ashes and its characterizations and mechanisms. Huang T; Zhang S; Liu L J Environ Manage; 2019 Feb; 232():207-218. PubMed ID: 30472564 [TBL] [Abstract][Full Text] [Related]
95. Recycling of municipal solid waste incinerator fly ash by using hydrocyclone separation. Ko MS; Chen YL; Wei PS Waste Manag; 2013 Mar; 33(3):615-20. PubMed ID: 23182658 [TBL] [Abstract][Full Text] [Related]
96. A combined kinetic and thermodynamic approach for interpreting the complex interactions during chloride volatilization of heavy metals in municipal solid waste fly ash. Kurashima K; Matsuda K; Kumagai S; Kameda T; Saito Y; Yoshioka T Waste Manag; 2019 Mar; 87():204-217. PubMed ID: 31109519 [TBL] [Abstract][Full Text] [Related]
97. Reduction of heavy metals leaching and pore volume in high-volume fly ash cement pastes by adding nano-SiO Huang Q; Tang S; You Y; Chen Y; Deng H; Tian R Environ Sci Pollut Res Int; 2020 Jun; 27(18):23369-23373. PubMed ID: 32382915 [TBL] [Abstract][Full Text] [Related]
98. Combining sieving and washing, a way to treat MSWI boiler fly ash. De Boom A; Degrez M Waste Manag; 2015 May; 39():179-88. PubMed ID: 25736808 [TBL] [Abstract][Full Text] [Related]
99. Comparison of leaching characteristics of heavy metals from bottom and fly ashes in Korea and Japan. Shim YS; Rhee SW; Lee WK Waste Manag; 2005; 25(5):473-80. PubMed ID: 15925757 [TBL] [Abstract][Full Text] [Related]
100. Solidification/stabilization of fly ash from city refuse incinerator facility and heavy metal sludge with cement additives. Cerbo AA; Ballesteros F; Chen TC; Lu MC Environ Sci Pollut Res Int; 2017 Jan; 24(2):1748-1756. PubMed ID: 27796983 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]