These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30455008)

  • 41. Characterization of calcium oxide catalysts from natural sources and their application in the transesterification of sunflower oil.
    Correia LM; Saboya RM; Campelo Nde S; Cecilia JA; Rodríguez-Castellón E; Cavalcante CL; Vieira RS
    Bioresour Technol; 2014 Jan; 151():207-13. PubMed ID: 24240148
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High purity H2 by sorption-enhanced chemical looping reforming of waste cooking oil in a packed bed reactor.
    Pimenidou P; Rickett G; Dupont V; Twigg MV
    Bioresour Technol; 2010 Dec; 101(23):9279-86. PubMed ID: 20655199
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of a Marl-Type Cement Raw Meal as CO
    Alonso M; Hornberger M; Spörl R; Scheffknecht G; Abanades C
    ACS Omega; 2018 Nov; 3(11):15229-15234. PubMed ID: 31458185
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CaO-based CO2 sorbents: from fundamentals to the development of new, highly effective materials.
    Kierzkowska AM; Pacciani R; Müller CR
    ChemSusChem; 2013 Jul; 6(7):1130-48. PubMed ID: 23821467
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Acoustic streaming enhances the Multicyclic CO2 capture of natural limestone at Ca-looping conditions.
    Valverde JM; Ebri JM; Quintanilla MA
    Environ Sci Technol; 2013 Aug; 47(16):9538-44. PubMed ID: 23883159
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthesis of highly efficient CaO-based, self-stabilizing CO2 sorbents via structure-reforming of steel slag.
    Tian S; Jiang J; Yan F; Li K; Chen X
    Environ Sci Technol; 2015 Jun; 49(12):7464-72. PubMed ID: 25961319
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The use of in situ powder X-ray diffraction in the investigation of dolomite as a potential reversible high-temperature CO2 sorbent.
    Readman JE; Blom R
    Phys Chem Chem Phys; 2005 Mar; 7(6):1214-9. PubMed ID: 19791335
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of sintering-resistant CaO-based sorbent derived from eggshells and bauxite tailings for cyclic CO2 capture.
    Shan S; Ma A; Hu Y; Jia Q; Wang Y; Peng J
    Environ Pollut; 2016 Jan; 208(Pt B):546-52. PubMed ID: 26549755
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of cerium oxide doping on the performance of CaO-based sorbents during calcium looping cycles.
    Wang S; Fan S; Fan L; Zhao Y; Ma X
    Environ Sci Technol; 2015 Apr; 49(8):5021-7. PubMed ID: 25815798
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The mechanism of vapor phase hydration of calcium oxide: implications for CO2 capture.
    Kudłacz K; Rodriguez-Navarro C
    Environ Sci Technol; 2014 Oct; 48(20):12411-8. PubMed ID: 25233236
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Carbon capture technology exploitation for vanadium tailings and assessment of CO
    Huang J; Fan Y; Liu T; Zhang Y; Hu P
    J Environ Manage; 2023 Apr; 331():117338. PubMed ID: 36696760
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Nanofibrous CaO Sorbent for CO
    Rodaev VV; Razlivalova SS; Tyurin AI; Vasyukov VM
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630899
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multi-Metals CaMgAl Metal-Organic Framework as CaO-based Sorbent to Achieve Highly CO
    Wu SC; Chang PH; Lin CY; Peng CH
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32408628
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Carbon dioxide capture using polyethylenimine-loaded mesoporous carbons.
    Wang J; Chen H; Zhou H; Liu X; Qiao W; Long D; Ling L
    J Environ Sci (China); 2013 Jan; 25(1):124-32. PubMed ID: 23586307
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High temperature CO2 capture using calcium oxide sorbent in a fixed-bed reactor.
    Dou B; Song Y; Liu Y; Feng C
    J Hazard Mater; 2010 Nov; 183(1-3):759-65. PubMed ID: 20724072
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Self-reactivated mesostructured Ca-Al-O composite for enhanced high-temperature CO2 capture and carbonation/calcination cycles performance.
    Chang PH; Huang WC; Lee TJ; Chang YP; Chen SY
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6172-9. PubMed ID: 25730384
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of dolomite decomposition under CO2 on its multicycle CO2 capture behaviour under calcium looping conditions.
    de la Calle Martos A; Valverde JM; Sanchez-Jimenez PE; Perejón A; García-Garrido C; Perez-Maqueda LA
    Phys Chem Chem Phys; 2016 Jun; 18(24):16325-36. PubMed ID: 27253328
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In situ studies of materials for high temperature CO
    Dunstan MT; Maugeri SA; Liu W; Tucker MG; Taiwo OO; Gonzalez B; Allan PK; Gaultois MW; Shearing PR; Keen DA; Phillips AE; Dove MT; Scott SA; Dennis JS; Grey CP
    Faraday Discuss; 2016 Oct; 192():217-240. PubMed ID: 27472014
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High temperature capture of CO2 on lithium-based sorbents from rice husk ash.
    Wang K; Guo X; Zhao P; Wang F; Zheng C
    J Hazard Mater; 2011 May; 189(1-2):301-7. PubMed ID: 21397399
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electrospun Zr-Doped CaO Sorbent for CO
    Rodaev VV; Razlivalova SS; Tyurin AI; Vasyukov VM
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839115
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.