BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 30455016)

  • 41. Phosphate fertilizer from sewage sludge ash (SSA).
    Franz M
    Waste Manag; 2008; 28(10):1809-18. PubMed ID: 17919895
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phosphorus recovery from sewage sludge via incineration with chlorine-based additives.
    Yang F; Chen J; Yang M; Wang X; Sun Y; Xu Y; Qian G
    Waste Manag; 2019 Jul; 95():644-651. PubMed ID: 31351652
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thermochemical treatment of sewage sludge ash with sodium salt additives for phosphorus fertilizer production--Analysis of underlying chemical reactions.
    Stemann J; Peplinski B; Adam C
    Waste Manag; 2015 Nov; 45():385-90. PubMed ID: 26219587
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced phosphorus availability and heavy metal removal by chlorination during sewage sludge pyrolysis.
    Xia Y; Tang Y; Shih K; Li B
    J Hazard Mater; 2020 Jan; 382():121110. PubMed ID: 31518771
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis.
    Liu T; Liu Z; Zheng Q; Lang Q; Xia Y; Peng N; Gai C
    Bioresour Technol; 2018 Jan; 247():282-290. PubMed ID: 28950137
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sequential extraction for heavy metal distribution of bottom ash from fluidized bed co-combusted phosphorus-rich sludge under the agglomeration/defluidization process.
    Lin K; Kuo JH; Lin CL; Liu ZS; Liu J
    Waste Manag Res; 2020 Feb; 38(2):122-133. PubMed ID: 31793381
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sewage sludge ash--A promising secondary phosphorus source for fertilizer production.
    Herzel H; Krüger O; Hermann L; Adam C
    Sci Total Environ; 2016 Jan; 542(Pt B):1136-43. PubMed ID: 26321235
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Co-pyrolysis of sewage sludge and phosphate tailings: Synergistically enhancing heavy metal immobilization and phosphorus availability.
    Xiao Y; Yan T; Yao P; Xiang W; Wu Y; Li J
    Waste Manag; 2024 May; 181():44-56. PubMed ID: 38583272
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Assessing the potential of sewage sludge-derived biochar as a novel phosphorus fertilizer: Influence of extractant solutions and pyrolysis temperatures.
    Figueiredo CC; Reis ASPJ; Araujo AS; Blum LEB; Shah K; Paz-Ferreiro J
    Waste Manag; 2021 Apr; 124():144-153. PubMed ID: 33621758
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An experimental and thermodynamic equilibrium investigation of the Pb, Zn, Cr, Cu, Mn and Ni partitioning during sewage sludge incineration.
    Liu J; Fu J; Ning X; Sun S; Wang Y; Xie W; Huang S; Zhong S
    J Environ Sci (China); 2015 Sep; 35():43-54. PubMed ID: 26354691
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Feasibility of sludge-based biochar for soil remediation: Characteristics and safety performance of heavy metals influenced by pyrolysis temperatures.
    Xing J; Li L; Li G; Xu G
    Ecotoxicol Environ Saf; 2019 Sep; 180():457-465. PubMed ID: 31121552
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Heavy metal leaching and plant uptake in mudflat soils amended with sewage sludge.
    Gu C; Bai Y
    Environ Sci Pollut Res Int; 2018 Nov; 25(31):31031-31039. PubMed ID: 30187402
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Experimental Investigation into the Effect of Pyrolysis on Chemical Forms of Heavy Metals in Sewage Sludge Biochar (SSB), with Brief Ecological Risk Assessment.
    Li B; Ding S; Fan H; Ren Y
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33477642
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CaO-assisted hydrothermal treatment combined with incineration of sewage sludge: Focusing on phosphorus (P) fractions, P-bioavailability, and heavy metals behaviors.
    Zheng X; Ying Z; Feng Y; Wang B; Dou B
    Chemosphere; 2022 Dec; 308(Pt 2):136391. PubMed ID: 36096311
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Effects of applying sewage sludge on chemical form distribution and bioavailability of heavy metals in soil].
    Song LL; Tie M; Zhang ZH; Hui XJ; Jing K; Chen ZL; Zhang Y
    Ying Yong Sheng Tai Xue Bao; 2012 Oct; 23(10):2701-7. PubMed ID: 23359929
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Co-combustion of industrial coal slurry and sewage sludge: Thermochemical and emission behavior of heavy metals.
    Fu B; Liu G; Mian MM; Zhou C; Sun M; Wu D; Liu Y
    Chemosphere; 2019 Oct; 233():440-451. PubMed ID: 31181492
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of municipal sewage sludge stabilized by fly ash on the growth of Manilagrass and transfer of heavy metals.
    Xu JQ; Yu RL; Dong XY; Hu GR; Shang XS; Wang Q; Li HW
    J Hazard Mater; 2012 May; 217-218():58-66. PubMed ID: 22459978
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of Corn Straw Blending on Phosphorus Specification and Bioavailability of Incinerated Sludge Ash.
    Dong Y; Yu R; Yan T; Zhao X; Zhang W
    ACS Omega; 2022 Apr; 7(15):13057-13066. PubMed ID: 35474809
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fixation and partitioning of heavy metals in slag after incineration of sewage sludge.
    Chen T; Yan B
    Waste Manag; 2012 May; 32(5):957-64. PubMed ID: 22221715
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effect of cellulose production waste and municipal sewage sludge on biomass and heavy metal uptake by a plant mixture.
    Antonkiewicz J; Pełka R; Bik-Małodzińska M; Żukowska G; Gleń-Karolczyk K
    Environ Sci Pollut Res Int; 2018 Nov; 25(31):31101-31112. PubMed ID: 30187410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.