These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 30455029)

  • 21. Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: Performance and associated mechanisms.
    Wang G; Li Q; Gao X; Wang XC
    Bioresour Technol; 2018 Feb; 250():812-820. PubMed ID: 30001588
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dual resource utilization for tannery sludge: Effects of sludge biochars (BCs) on volatile fatty acids (VFAs) production from sludge anaerobic digestion.
    Zhai S; Li M; Xiong Y; Wang D; Fu S
    Bioresour Technol; 2020 Nov; 316():123903. PubMed ID: 32763801
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A process combining hydrothermal pretreatment, anaerobic digestion and pyrolysis for sewage sludge dewatering and co-production of biogas and biochar: Pilot-scale verification.
    Li C; Wang X; Zhang G; Li J; Li Z; Yu G; Wang Y
    Bioresour Technol; 2018 Apr; 254():187-193. PubMed ID: 29413922
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge.
    Jin J; Li Y; Zhang J; Wu S; Cao Y; Liang P; Zhang J; Wong MH; Wang M; Shan S; Christie P
    J Hazard Mater; 2016 Dec; 320():417-426. PubMed ID: 27585274
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of pyrolysis temperature on characteristics and environmental risk of heavy metals in pyrolyzed biochar made from hydrothermally treated sewage sludge.
    Wang X; Chi Q; Liu X; Wang Y
    Chemosphere; 2019 Feb; 216():698-706. PubMed ID: 30391891
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characteristics of biochars prepared by co-pyrolysis of sewage sludge and cotton stalk intended for use as soil amendments.
    Wang Z; Shu X; Zhu H; Xie L; Cheng S; Zhang Y
    Environ Technol; 2020 Apr; 41(11):1347-1357. PubMed ID: 30300096
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Harvesting zero waste from co-digested fruit and vegetable peels via integrated fermentation and pyrolysis processes.
    Soltan M; Elsamadony M; Mostafa A; Awad H; Tawfik A
    Environ Sci Pollut Res Int; 2019 Apr; 26(10):10429-10438. PubMed ID: 30811023
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation of biochar from food waste digestate: Pyrolysis behavior and product properties.
    Liu J; Huang S; Chen K; Wang T; Mei M; Li J
    Bioresour Technol; 2020 Apr; 302():122841. PubMed ID: 32000134
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge.
    Chen T; Zhang Y; Wang H; Lu W; Zhou Z; Zhang Y; Ren L
    Bioresour Technol; 2014 Jul; 164():47-54. PubMed ID: 24835918
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: Biochar properties and environmental risk from metals.
    Jin J; Wang M; Cao Y; Wu S; Liang P; Li Y; Zhang J; Zhang J; Wong MH; Shan S; Christie P
    Bioresour Technol; 2017 Mar; 228():218-226. PubMed ID: 28064134
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of pyrolysis temperatures on freely dissolved polycyclic aromatic hydrocarbon (PAH) concentrations in sewage sludge-derived biochars.
    Zielińska A; Oleszczuk P
    Chemosphere; 2016 Jun; 153():68-74. PubMed ID: 27010168
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Harnessing dark fermentative hydrogen from pretreated mixture of food waste and sewage sludge under sequencing batch mode.
    Nam JY; Kim DH; Kim SH; Lee W; Shin HS; Kim HW
    Environ Sci Pollut Res Int; 2016 Apr; 23(8):7155-61. PubMed ID: 26150291
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A feasibility study of agricultural and sewage biomass as biochar, bioenergy and biocomposite feedstock: production, characterization and potential applications.
    Srinivasan P; Sarmah AK; Smernik R; Das O; Farid M; Gao W
    Sci Total Environ; 2015 Apr; 512-513():495-505. PubMed ID: 25644846
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Valorization of rubberwood sawdust and sewage sludge by pyrolysis and co-pyrolysis using agitated bed reactor for producing biofuel or value-added products.
    Ali L; Palamanit A; Techato K; Baloch KA; Jutidamrongphan W
    Environ Sci Pollut Res Int; 2022 Jan; 29(1):1338-1363. PubMed ID: 34355326
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improvements in physicochemical and nutrient properties of sewage sludge biochar by the co-pyrolysis with organic additives.
    Yin X; Xi M; Li Y; Kong F; Jiang Z
    Sci Total Environ; 2021 Jul; 779():146565. PubMed ID: 34030244
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combining impregnation and co-pyrolysis to reduce the environmental risk of biochar derived from sewage sludge.
    Min X; Ge T; Li H; Shi Y; Fang T; Sheng B; Li H; Dong X
    Chemosphere; 2022 Mar; 290():133371. PubMed ID: 34952014
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge.
    Wang X; Li C; Li Z; Yu G; Wang Y
    Ecotoxicol Environ Saf; 2019 Jan; 168():45-52. PubMed ID: 30384166
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Digestion of high rate activated sludge coupled to biochar formation for soil improvement in the tropics.
    Nansubuga I; Banadda N; Ronsse F; Verstraete W; Rabaey K
    Water Res; 2015 Sep; 81():216-22. PubMed ID: 26072019
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biochar produced from the co-pyrolysis of sewage sludge and walnut shell for ammonium and phosphate adsorption from water.
    Yin Q; Liu M; Ren H
    J Environ Manage; 2019 Nov; 249():109410. PubMed ID: 31446122
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of pyrolysis conditions on the total contents of polycyclic aromatic hydrocarbons in biochars produced from organic residues: Assessment of their hazard potential.
    De la Rosa JM; Sánchez-Martín ÁM; Campos P; Miller AZ
    Sci Total Environ; 2019 Jun; 667():578-585. PubMed ID: 30833256
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.