These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 3045517)

  • 1. Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae.
    Hinnebusch AG
    Microbiol Rev; 1988 Jun; 52(2):248-73. PubMed ID: 3045517
    [No Abstract]   [Full Text] [Related]  

  • 2. [Genetic regulatory mechanisms of amino acid biosynthesis in Saccharomyces cerevisiae: mechanism of translational control of GCN4].
    Harashima S
    Tanpakushitsu Kakusan Koso; 1994 Mar; 39(4):530-41. PubMed ID: 8165298
    [No Abstract]   [Full Text] [Related]  

  • 3. Molecular characterization of GCD1, a yeast gene required for general control of amino acid biosynthesis and cell-cycle initiation.
    Hill DE; Struhl K
    Nucleic Acids Res; 1988 Oct; 16(19):9253-65. PubMed ID: 3050897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional and translational regulation of gene expression in the general control of amino-acid biosynthesis in Saccharomyces cerevisiae.
    Hinnebusch AG
    Prog Nucleic Acid Res Mol Biol; 1990; 38():195-240. PubMed ID: 2183294
    [No Abstract]   [Full Text] [Related]  

  • 5. Multiple levels of gene regulation in the control of amino acid biosynthesis in Saccharomyces cerevisiae.
    Hinnebusch AG
    Bioessays; 1986 Aug; 5(2):57-62. PubMed ID: 3539114
    [No Abstract]   [Full Text] [Related]  

  • 6. Transcription factor GCN4 for control of amino acid biosynthesis also regulates the expression of the gene for lipoamide dehydrogenase.
    Zaman Z; Bowman SB; Kornfeld GD; Brown AJ; Dawes IW
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):855-62. PubMed ID: 10359673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the yeast HIS5 gene responsive to general control of amino acid biosynthesis.
    Nishiwaki K; Hayashi N; Irie S; Chung DH; Harashima S; Oshima Y
    Mol Gen Genet; 1987 Jun; 208(1-2):159-67. PubMed ID: 3302607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for translational regulation of the activator of general amino acid control in yeast.
    Hinnebusch AG
    Proc Natl Acad Sci U S A; 1984 Oct; 81(20):6442-6. PubMed ID: 6387704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translational control of transcription in eukaryotes.
    Fink GR
    Cell; 1986 Apr; 45(2):155-6. PubMed ID: 3516410
    [No Abstract]   [Full Text] [Related]  

  • 10. [Regulation of the expression of the ADE1 and ADE2 genes in Saccharomyces cerevisiae yeasts under conditions of amino acid deficiency].
    Alenin VV
    Mikrobiol Zh (1978); 1988; 50(2):84-5. PubMed ID: 3074249
    [No Abstract]   [Full Text] [Related]  

  • 11. The genetic regulation and coordination of biosynthetic pathways in yeast: amino acid and phospholipid synthesis.
    Henry SA; Klig LS; Loewy BS
    Annu Rev Genet; 1984; 18():207-31. PubMed ID: 6397122
    [No Abstract]   [Full Text] [Related]  

  • 12. The general control of amino acid biosynthetic genes in the yeast Saccharomyces cerevisiae.
    Hinnebusch AG
    CRC Crit Rev Biochem; 1986; 21(3):277-317. PubMed ID: 3536302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hierarchy of trans-acting factors modulates translation of an activator of amino acid biosynthetic genes in Saccharomyces cerevisiae.
    Hinnebusch AG
    Mol Cell Biol; 1985 Sep; 5(9):2349-60. PubMed ID: 3915540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplicity of regulatory mechanisms controlling amino acid biosynthesis in Saccharomyces cerevisiae.
    Messenguy F
    Microbiol Sci; 1987 May; 4(5):150-3. PubMed ID: 3153190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. crl mutants of Saccharomyces cerevisiae resemble both mutants affecting general control of amino acid biosynthesis and omnipotent translational suppressor mutants.
    McCusker JH; Haber JE
    Genetics; 1988 Jun; 119(2):317-27. PubMed ID: 3294104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Negative regulatory gene for general control of amino acid biosynthesis in Saccharomyces cerevisiae.
    Myers PL; Skvirsky RC; Greenberg ML; Greer H
    Mol Cell Biol; 1986 Sep; 6(9):3150-5. PubMed ID: 3537730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new negative control gene for amino acid biosynthesis in Saccharomyces cerevisiae.
    Skvirsky RC; Greenberg ML; Myers PL; Greer H
    Curr Genet; 1986; 10(7):495-501. PubMed ID: 3327608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence that GCD6 and GCD7, translational regulators of GCN4, are subunits of the guanine nucleotide exchange factor for eIF-2 in Saccharomyces cerevisiae.
    Bushman JL; Asuru AI; Matts RL; Hinnebusch AG
    Mol Cell Biol; 1993 Mar; 13(3):1920-32. PubMed ID: 8441423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repression of the genes for lysine biosynthesis in Saccharomyces cerevisiae is caused by limitation of Lys14-dependent transcriptional activation.
    Feller A; Dubois E; Ramos F; PiƩrard A
    Mol Cell Biol; 1994 Oct; 14(10):6411-8. PubMed ID: 7935367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proline biosynthesis in Saccharomyces cerevisiae: analysis of the PRO3 gene, which encodes delta 1-pyrroline-5-carboxylate reductase.
    Brandriss MC; Falvey DA
    J Bacteriol; 1992 Aug; 174(15):5176. PubMed ID: 1352771
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 22.