BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

713 related articles for article (PubMed ID: 30455421)

  • 1. Change in future climate due to Antarctic meltwater.
    Bronselaer B; Winton M; Griffies SM; Hurlin WJ; Rodgers KB; Sergienko OV; Stouffer RJ; Russell JL
    Nature; 2018 Dec; 564(7734):53-58. PubMed ID: 30455421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The multi-millennial Antarctic commitment to future sea-level rise.
    Golledge NR; Kowalewski DE; Naish TR; Levy RH; Fogwill CJ; Gasson EG
    Nature; 2015 Oct; 526(7573):421-5. PubMed ID: 26469052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf.
    Garabato AC; Forryan A; Dutrieux P; Brannigan L; Biddle LC; Heywood KJ; Jenkins A; Firing YL; Kimura S
    Nature; 2017 Feb; 542(7640):219-222. PubMed ID: 28135723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sea-ice transport driving Southern Ocean salinity and its recent trends.
    Haumann FA; Gruber N; Münnich M; Frenger I; Kern S
    Nature; 2016 Sep; 537(7618):89-92. PubMed ID: 27582222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Future climate response to Antarctic Ice Sheet melt caused by anthropogenic warming.
    Sadai S; Condron A; DeConto R; Pollard D
    Sci Adv; 2020 Sep; 6(39):. PubMed ID: 32967838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initiation and long-term instability of the East Antarctic Ice Sheet.
    Gulick SPS; Shevenell AE; Montelli A; Fernandez R; Smith C; Warny S; Bohaty SM; Sjunneskog C; Leventer A; Frederick B; Blankenship DD
    Nature; 2017 Dec; 552(7684):225-229. PubMed ID: 29239353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abyssal ocean overturning slowdown and warming driven by Antarctic meltwater.
    Li Q; England MH; Hogg AM; Rintoul SR; Morrison AK
    Nature; 2023 Mar; 615(7954):841-847. PubMed ID: 36991191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. West Antarctic Ice Sheet retreat driven by Holocene warm water incursions.
    Hillenbrand CD; Smith JA; Hodell DA; Greaves M; Poole CR; Kender S; Williams M; Andersen TJ; Jernas PE; Elderfield H; Klages JP; Roberts SJ; Gohl K; Larter RD; Kuhn G
    Nature; 2017 Jul; 547(7661):43-48. PubMed ID: 28682333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential sea-level rise from Antarctic ice-sheet instability constrained by observations.
    Ritz C; Edwards TL; Durand G; Payne AJ; Peyaud V; Hindmarsh RC
    Nature; 2015 Dec; 528(7580):115-8. PubMed ID: 26580020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Similar meltwater contributions to glacial sea level changes from Antarctic and northern ice sheets.
    Rohling EJ; Marsh R; Wells NC; Siddall M; Edwards NR
    Nature; 2004 Aug; 430(7003):1016-21. PubMed ID: 15329718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history.
    Mulvaney R; Abram NJ; Hindmarsh RC; Arrowsmith C; Fleet L; Triest J; Sime LC; Alemany O; Foord S
    Nature; 2012 Sep; 489(7414):141-4. PubMed ID: 22914090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water.
    Silvano A; Rintoul SR; Peña-Molino B; Hobbs WR; van Wijk E; Aoki S; Tamura T; Williams GD
    Sci Adv; 2018 Apr; 4(4):eaap9467. PubMed ID: 29675467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chapter 1. Impacts of the oceans on climate change.
    Reid PC; Fischer AC; Lewis-Brown E; Meredith MP; Sparrow M; Andersson AJ; Antia A; Bates NR; Bathmann U; Beaugrand G; Brix H; Dye S; Edwards M; Furevik T; Gangstø R; Hátún H; Hopcroft RR; Kendall M; Kasten S; Keeling R; Le Quéré C; Mackenzie FT; Malin G; Mauritzen C; Olafsson J; Paull C; Rignot E; Shimada K; Vogt M; Wallace C; Wang Z; Washington R
    Adv Mar Biol; 2009; 56():1-150. PubMed ID: 19895974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of Antarctica to past and future sea-level rise.
    DeConto RM; Pollard D
    Nature; 2016 Mar; 531(7596):591-7. PubMed ID: 27029274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Choosing the future of Antarctica.
    Rintoul SR; Chown SL; DeConto RM; England MH; Fricker HA; Masson-Delmotte V; Naish TR; Siegert MJ; Xavier JC
    Nature; 2018 Jun; 558(7709):233-241. PubMed ID: 29899481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Onset of deglacial warming in West Antarctica driven by local orbital forcing.
    WAIS Divide Project Members
    Nature; 2013 Aug; 500(7463):440-4. PubMed ID: 23945585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Widespread movement of meltwater onto and across Antarctic ice shelves.
    Kingslake J; Ely JC; Das I; Bell RE
    Nature; 2017 Apr; 544(7650):349-352. PubMed ID: 28425995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Future sea-level rise from Greenland's main outlet glaciers in a warming climate.
    Nick FM; Vieli A; Andersen ML; Joughin I; Payne A; Edwards TL; Pattyn F; van de Wal RS
    Nature; 2013 May; 497(7448):235-8. PubMed ID: 23657350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ocean variability beneath Thwaites Eastern Ice Shelf driven by the Pine Island Bay Gyre strength.
    Dotto TS; Heywood KJ; Hall RA; Scambos TA; Zheng Y; Nakayama Y; Hyogo S; Snow T; Wåhlin AK; Wild C; Truffer M; Muto A; Alley KE; Boehme L; Bortolotto GA; Tyler SW; Pettit E
    Nat Commun; 2022 Dec; 13(1):7840. PubMed ID: 36543787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials.
    Wilson DJ; Bertram RA; Needham EF; van de Flierdt T; Welsh KJ; McKay RM; Mazumder A; Riesselman CR; Jimenez-Espejo FJ; Escutia C
    Nature; 2018 Sep; 561(7723):383-386. PubMed ID: 30232420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.