These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Engineering shape memory and morphing protein hydrogels based on protein unfolding and folding. Bian Q; Fu L; Li H Nat Commun; 2022 Jan; 13(1):137. PubMed ID: 35013234 [TBL] [Abstract][Full Text] [Related]
5. Bio-inspired facile strategy for programmable osmosis-driven shape-morphing elastomer composite structures. Yang Y; Wang Y; Lin M; Liu M; Huang C Mater Horiz; 2024 May; 11(9):2180-2190. PubMed ID: 38406864 [TBL] [Abstract][Full Text] [Related]
6. Super tough magnetic hydrogels for remotely triggered shape morphing. Tang J; Tong Z; Xia Y; Liu M; Lv Z; Gao Y; Lu T; Xie S; Pei Y; Fang D; Wang TJ J Mater Chem B; 2018 May; 6(18):2713-2722. PubMed ID: 32254223 [TBL] [Abstract][Full Text] [Related]
7. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures. Yuk H; Zhang T; Parada GA; Liu X; Zhao X Nat Commun; 2016 Jun; 7():12028. PubMed ID: 27345380 [TBL] [Abstract][Full Text] [Related]
8. Smart Actuators and Adhesives for Reconfigurable Matter. Ko H; Javey A Acc Chem Res; 2017 Apr; 50(4):691-702. PubMed ID: 28263544 [TBL] [Abstract][Full Text] [Related]
9. Inside-Out 3D Reversible Ion-Triggered Shape-Morphing Hydrogels. Du X; Cui H; Zhao Q; Wang J; Chen H; Wang Y Research (Wash D C); 2019; 2019():6398296. PubMed ID: 31549074 [TBL] [Abstract][Full Text] [Related]
10. Elastomer-Hydrogel Systems: From Bio-Inspired Interfaces to Medical Applications. Demirci G; Niedźwiedź MJ; Kantor-Malujdy N; El Fray M Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566990 [TBL] [Abstract][Full Text] [Related]
11. Universal inverse design of surfaces with thin nematic elastomer sheets. Aharoni H; Xia Y; Zhang X; Kamien RD; Yang S Proc Natl Acad Sci U S A; 2018 Jul; 115(28):7206-7211. PubMed ID: 29929963 [TBL] [Abstract][Full Text] [Related]
12. Programmed shape-morphing into complex target shapes using architected dielectric elastomer actuators. Hajiesmaili E; Larson NM; Lewis JA; Clarke DR Sci Adv; 2022 Jul; 8(28):eabn9198. PubMed ID: 35857528 [TBL] [Abstract][Full Text] [Related]
13. Bioinspired shape shifting of liquid-infused ribbed sheets. Cappello J; Scheid B; Brau F; Siéfert E Proc Natl Acad Sci U S A; 2023 Jan; 120(1):e2216001120. PubMed ID: 36580599 [TBL] [Abstract][Full Text] [Related]
14. Reactive 3D Printing of Shape-Programmable Liquid Crystal Elastomer Actuators. Barnes M; Sajadi SM; Parekh S; Rahman MM; Ajayan PM; Verduzco R ACS Appl Mater Interfaces; 2020 Jun; 12(25):28692-28699. PubMed ID: 32484325 [TBL] [Abstract][Full Text] [Related]
16. Marine Amoebae-Inspired Salting Hydrogels to Reconfigure Anisotropy for Reprogrammable Shape Morphing. Gao G; Yin K; Han J; Hu Y; Gu J; Wei J; Chen T Angew Chem Int Ed Engl; 2024 Oct; ():e202416672. PubMed ID: 39392592 [TBL] [Abstract][Full Text] [Related]
17. Direct shape programming of liquid crystal elastomers. Barnes M; Verduzco R Soft Matter; 2019 Jan; 15(5):870-879. PubMed ID: 30628627 [TBL] [Abstract][Full Text] [Related]
18. Stretchable living materials and devices with hydrogel-elastomer hybrids hosting programmed cells. Liu X; Tang TC; Tham E; Yuk H; Lin S; Lu TK; Zhao X Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2200-2205. PubMed ID: 28202725 [TBL] [Abstract][Full Text] [Related]
19. Spontaneous bending of pre-stretched bilayers. DeSimone A Meccanica; 2018; 53(3):511-518. PubMed ID: 29497212 [TBL] [Abstract][Full Text] [Related]
20. Bio-Inspired Bianisotropic Magneto-Sensitive Elastomers with Excellent Multimodal Transformation. Zhang J; Wang Y; Deng H; Zhao C; Zhang Y; Liang H; Gong X ACS Appl Mater Interfaces; 2022 May; 14(17):20101-20112. PubMed ID: 35442629 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]