These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30455583)

  • 21. Experimental investigation of esophageal reconstruction with electrospun polyurethane nanofiber and 3D printing polycaprolactone scaffolds using a rat model.
    Park H; Kim IG; Wu Y; Cho H; Shin JW; Park SA; Chung EJ
    Head Neck; 2021 Mar; 43(3):833-848. PubMed ID: 33241663
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis and characterization of electrospun nanofibrous tissue engineering scaffolds generated from in situ polymerization of ionomeric polyurethane composites.
    Chan JP; Battiston KG; Santerre JP
    Acta Biomater; 2019 Sep; 96():161-174. PubMed ID: 31254683
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Additive manufacturing of an elastic poly(ester)urethane for cartilage tissue engineering.
    Camarero-Espinosa S; Calore A; Wilbers A; Harings J; Moroni L
    Acta Biomater; 2020 Jan; 102():192-204. PubMed ID: 31778830
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A review: fabrication of porous polyurethane scaffolds.
    Janik H; Marzec M
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():586-91. PubMed ID: 25579961
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis and 3D printing of biodegradable polyurethane elastomer by a water-based process for cartilage tissue engineering applications.
    Hung KC; Tseng CS; Hsu SH
    Adv Healthc Mater; 2014 Oct; 3(10):1578-87. PubMed ID: 24729580
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A simple and effective method for making multipotent/multilineage scaffolds with hydrophilic nature without any postmodification/treatment.
    Vaikkath D; Anitha R; Sumathy B; Nair PD
    Colloids Surf B Biointerfaces; 2016 May; 141():112-119. PubMed ID: 26848946
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biodegradable polyurethane scaffolds in regenerative medicine: Clinical translation review.
    Pedersen DD; Kim S; Wagner WR
    J Biomed Mater Res A; 2022 Aug; 110(8):1460-1487. PubMed ID: 35481723
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrospun biodegradable chitosan based-poly(urethane urea) scaffolds for soft tissue engineering.
    Vieira T; Carvalho Silva J; Botelho do Rego AM; Borges JP; Henriques C
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109819. PubMed ID: 31349414
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biodegradable water-based polyurethane scaffolds with a sequential release function for cell-free cartilage tissue engineering.
    Wen YT; Dai NT; Hsu SH
    Acta Biomater; 2019 Apr; 88():301-313. PubMed ID: 30825604
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly resilient porous polyurethane composite scaffolds filled with whitlockite for bone tissue engineering.
    Du J; Zhang Y; Wang J; Xu M; Qin M; Zhang X; Huang D
    J Biomater Sci Polym Ed; 2023 May; 34(7):845-859. PubMed ID: 36346014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and comprehensive assessment of a biomimetic tri-layer tubular scaffold via biodegradable polymers for vascular tissue engineering applications.
    Jia W; Li M; Weng H; Gu G; Chen Z
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110717. PubMed ID: 32204029
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modulation of the gene expression of annulus fibrosus-derived stem cells using poly(ether carbonate urethane)urea scaffolds of tunable elasticity.
    Zhu C; Li J; Liu C; Zhou P; Yang H; Li B
    Acta Biomater; 2016 Jan; 29():228-238. PubMed ID: 26432437
    [TBL] [Abstract][Full Text] [Related]  

  • 33. β-Tricalcium phosphate/poly(glycerol sebacate) scaffolds with robust mechanical property for bone tissue engineering.
    Yang K; Zhang J; Ma X; Ma Y; Kan C; Ma H; Li Y; Yuan Y; Liu C
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():37-47. PubMed ID: 26249563
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Composite elastomeric polyurethane scaffolds incorporating small intestinal submucosa for soft tissue engineering.
    Da L; Gong M; Chen A; Zhang Y; Huang Y; Guo Z; Li S; Li-Ling J; Zhang L; Xie H
    Acta Biomater; 2017 Sep; 59():45-57. PubMed ID: 28528117
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Soft Elastic Fibrous Scaffolds for Muscle Tissue Engineering by Touch Spinning.
    Uribe-Gomez J; Posada-Murcia A; Shukla A; Alkhamis H; Salehi S; Ionov L
    ACS Appl Bio Mater; 2021 Jul; 4(7):5585-5597. PubMed ID: 35006745
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.
    Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU
    J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications.
    Stefani I; Cooper-White JJ
    Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: physical properties and in vitro assay.
    Asefnejad A; Khorasani MT; Behnamghader A; Farsadzadeh B; Bonakdar S
    Int J Nanomedicine; 2011; 6():2375-84. PubMed ID: 22072874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Excavating the Role of Aloe Vera Wrapped Mesoporous Hydroxyapatite Frame Ornamentation in Newly Architectured Polyurethane Scaffolds for Osteogenesis and Guided Bone Regeneration with Microbial Protection.
    Selvakumar M; Pawar HS; Francis NK; Das B; Dhara S; Chattopadhyay S
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):5941-60. PubMed ID: 26889707
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [FABRICATION AND BIOCOMPATIBILITY EVALUATION OF POLYURETHANE- ACELLULAR MATRIX COMPOSITE SCAFFOLD IN VITRO AND IN VIVO].
    Xiao Y; Zhang J; Lu Y; Yuan H; Bai L; Jiang X; Cheng J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2015 Aug; 29(8):1016-21. PubMed ID: 26677626
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.