BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30456352)

  • 1. Discovery of a cofactor-independent inhibitor of
    Xia Y; Zhou Y; Carter DS; McNeil MB; Choi W; Halladay J; Berry PW; Mao W; Hernandez V; O'Malley T; Korkegian A; Sunde B; Flint L; Woolhiser LK; Scherman MS; Gruppo V; Hastings C; Robertson GT; Ioerger TR; Sacchettini J; Tonge PJ; Lenaerts AJ; Parish T; Alley M
    Life Sci Alliance; 2018 Jun; 1(3):e201800025. PubMed ID: 30456352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances and Structural Features of Enoyl-ACP Reductase Inhibitors of Mycobacterium tuberculosis.
    Inturi B; Pujar GV; Purohit MN
    Arch Pharm (Weinheim); 2016 Nov; 349(11):817-826. PubMed ID: 27775177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: adduct affinity and drug resistance.
    Rawat R; Whitty A; Tonge PJ
    Proc Natl Acad Sci U S A; 2003 Nov; 100(24):13881-6. PubMed ID: 14623976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of modern InhA inhibitors to combat drug resistant strains of Mycobacterium tuberculosis.
    Tonge PJ; Kisker C; Slayden RA
    Curr Top Med Chem; 2007; 7(5):489-98. PubMed ID: 17346194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct inhibitors of InhA are active against Mycobacterium tuberculosis.
    Manjunatha UH; S Rao SP; Kondreddi RR; Noble CG; Camacho LR; Tan BH; Ng SH; Ng PS; Ma NL; Lakshminarayana SB; Herve M; Barnes SW; Yu W; Kuhen K; Blasco F; Beer D; Walker JR; Tonge PJ; Glynne R; Smith PW; Diagana TT
    Sci Transl Med; 2015 Jan; 7(269):269ra3. PubMed ID: 25568071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-Benzyl-4-((heteroaryl)methyl)benzamides: A New Class of Direct NADH-Dependent 2-trans Enoyl-Acyl Carrier Protein Reductase (InhA) Inhibitors with Antitubercular Activity.
    Guardia A; Gulten G; Fernandez R; Gómez J; Wang F; Convery M; Blanco D; Martínez M; Pérez-Herrán E; Alonso M; Ortega F; Rullás J; Calvo D; Mata L; Young R; Sacchettini JC; Mendoza-Losana A; Remuiñán M; Ballell Pages L; Castro-Pichel J
    ChemMedChem; 2016 Apr; 11(7):687-701. PubMed ID: 26934341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Encoded library technology as a source of hits for the discovery and lead optimization of a potent and selective class of bactericidal direct inhibitors of Mycobacterium tuberculosis InhA.
    Encinas L; O'Keefe H; Neu M; Remuiñán MJ; Patel AM; Guardia A; Davie CP; Pérez-Macías N; Yang H; Convery MA; Messer JA; Pérez-Herrán E; Centrella PA; Alvarez-Gómez D; Clark MA; Huss S; O'Donovan GK; Ortega-Muro F; McDowell W; Castañeda P; Arico-Muendel CC; Pajk S; Rullás J; Angulo-Barturen I; Alvarez-Ruíz E; Mendoza-Losana A; Ballell Pages L; Castro-Pichel J; Evindar G
    J Med Chem; 2014 Feb; 57(4):1276-88. PubMed ID: 24450589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of cofactor-specific, bactericidal Mycobacterium tuberculosis InhA inhibitors using DNA-encoded library technology.
    Soutter HH; Centrella P; Clark MA; Cuozzo JW; Dumelin CE; Guie MA; Habeshian S; Keefe AD; Kennedy KM; Sigel EA; Troast DM; Zhang Y; Ferguson AD; Davies G; Stead ER; Breed J; Madhavapeddi P; Read JA
    Proc Natl Acad Sci U S A; 2016 Dec; 113(49):E7880-E7889. PubMed ID: 27864515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is IQG-607 a Potential Metallodrug or Metallopro-Drug With a Defined Molecular Target in
    Abbadi BL; Rodrigues-Junior VDS; Dadda ADS; Pissinate K; Villela AD; Campos MM; Lopes LGF; Bizarro CV; Machado P; Sousa EHS; Basso LA
    Front Microbiol; 2018; 9():880. PubMed ID: 29765372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mutations of katG and inhA genes of isoniazid-resistant Mycobacterium tuberculosis isolates in Taiwan.
    Tseng ST; Tai CH; Li CR; Lin CF; Shi ZY
    J Microbiol Immunol Infect; 2015 Jun; 48(3):249-55. PubMed ID: 24184004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of the enoyl-ACP reductase of Mycobacterium tuberculosis (InhA) in the apo-form and in complex with the active metabolite of isoniazid pre-formed by a biomimetic approach.
    Chollet A; Mourey L; Lherbet C; Delbot A; Julien S; Baltas M; Bernadou J; Pratviel G; Maveyraud L; Bernardes-Génisson V
    J Struct Biol; 2015 Jun; 190(3):328-37. PubMed ID: 25891098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ethionamide cross- and co-resistance in children with isoniazid-resistant tuberculosis.
    Schaaf HS; Victor TC; Venter A; Brittle W; Jordaan AM; Hesseling AC; Marais BJ; van Helden PD; Donald PR
    Int J Tuberc Lung Dis; 2009 Nov; 13(11):1355-9. PubMed ID: 19861006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallographic and pre-steady-state kinetics studies on binding of NADH to wild-type and isoniazid-resistant enoyl-ACP(CoA) reductase enzymes from Mycobacterium tuberculosis.
    Oliveira JS; Pereira JH; Canduri F; Rodrigues NC; de Souza ON; de Azevedo WF; Basso LA; Santos DS
    J Mol Biol; 2006 Jun; 359(3):646-66. PubMed ID: 16647717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A virtual screen discovers novel, fragment-sized inhibitors of Mycobacterium tuberculosis InhA.
    Perryman AL; Yu W; Wang X; Ekins S; Forli S; Li SG; Freundlich JS; Tonge PJ; Olson AJ
    J Chem Inf Model; 2015 Mar; 55(3):645-59. PubMed ID: 25636146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Characterization of the katG, inhA, ahpC, kasA, and oxyR gene mutations in isoniazid-resistant and susceptible strain of Mycobacterium tuberculosis by automated DNA sequencing].
    Chen X; Ma Y; Jin Q; Jiang GL; Li CY; Wang Q
    Zhonghua Jie He He Hu Xi Za Zhi; 2005 Apr; 28(4):250-3. PubMed ID: 15854436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystallographic studies on the binding of isonicotinyl-NAD adduct to wild-type and isoniazid resistant 2-trans-enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis.
    Dias MV; Vasconcelos IB; Prado AM; Fadel V; Basso LA; de Azevedo WF; Santos DS
    J Struct Biol; 2007 Sep; 159(3):369-80. PubMed ID: 17588773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing mechanisms of resistance to the tuberculosis drug isoniazid: Conformational changes caused by inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis.
    Kruh NA; Rawat R; Ruzsicska BP; Tonge PJ
    Protein Sci; 2007 Aug; 16(8):1617-27. PubMed ID: 17600151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variants of katG, inhA and nat genes are not associated with mutations in efflux pump genes (mmpL3 and mmpL7) in isoniazid-resistant clinical isolates of Mycobacterium tuberculosis from India.
    Unissa AN; Dusthackeer VNA; Kumar MP; Nagarajan P; Sukumar S; Kumari VI; Lakshmi AR; Hanna LE
    Tuberculosis (Edinb); 2017 Dec; 107():144-148. PubMed ID: 29050763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular characterization of isoniazid-resistant Mycobacterium tuberculosis isolates collected in Australia.
    Lavender C; Globan M; Sievers A; Billman-Jacobe H; Fyfe J
    Antimicrob Agents Chemother; 2005 Oct; 49(10):4068-74. PubMed ID: 16189082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficacy and Improved Resistance Potential of a Cofactor-Independent InhA Inhibitor of Mycobacterium tuberculosis in the C3HeB/FeJ Mouse Model.
    Robertson GT; Ektnitphong VA; Scherman MS; McNeil MB; Dennison D; Korkegian A; Smith AJ; Halladay J; Carter DS; Xia Y; Zhou Y; Choi W; Berry PW; Mao W; Hernandez V; Alley MRK; Parish T; Lenaerts AJ
    Antimicrob Agents Chemother; 2019 Apr; 63(4):. PubMed ID: 30745397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.