These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 30456404)

  • 21. Two-dimensional tetrathiafulvalene covalent organic frameworks: towards latticed conductive organic salts.
    Jin S; Sakurai T; Kowalczyk T; Dalapati S; Xu F; Wei H; Chen X; Gao J; Seki S; Irle S; Jiang D
    Chemistry; 2014 Nov; 20(45):14608-13. PubMed ID: 24782435
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploring the similarity of single-layer covalent organic frameworks using electronic structure calculations.
    Raptakis A; Croy A; Dianat A; Gutierrez R; Cuniberti G
    RSC Adv; 2022 Apr; 12(20):12283-12291. PubMed ID: 35480357
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anisotropic Poisson's ratio and compression modulus of cortical bone determined by speckle interferometry.
    Shahar R; Zaslansky P; Barak M; Friesem AA; Currey JD; Weiner S
    J Biomech; 2007; 40(2):252-64. PubMed ID: 16563402
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vinylene-Bridged Two-Dimensional Covalent Organic Frameworks via Knoevenagel Condensation of Tricyanomesitylene.
    Bi S; Thiruvengadam P; Wei S; Zhang W; Zhang F; Gao L; Xu J; Wu D; Chen JS; Zhang F
    J Am Chem Soc; 2020 Jul; 142(27):11893-11900. PubMed ID: 32532158
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The thermoelastic properties of monolayer covalent organic frameworks studied by machine-learning molecular dynamics.
    Wang B; Ying P; Zhang J
    Nanoscale; 2023 Dec; 16(1):237-248. PubMed ID: 38053436
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of interlayer slipping on the geometric, thermal and adsorption properties of 2D covalent organic frameworks: a comprehensive review based on computational modelling studies.
    Sajid H
    Phys Chem Chem Phys; 2024 Mar; 26(11):8577-8603. PubMed ID: 38421236
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metal-organic Kagome lattices M3(2,3,6,7,10,11-hexaiminotriphenylene)2 (M = Ni and Cu): from semiconducting to metallic by metal substitution.
    Chen S; Dai J; Zeng XC
    Phys Chem Chem Phys; 2015 Feb; 17(8):5954-8. PubMed ID: 25636056
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel SiO monolayer with a negative Poisson's ratio and Dirac semimetal properties.
    Du H; Li G; Chen J; Lv Z; Chen Y; Liu S
    Phys Chem Chem Phys; 2020 Sep; 22(35):20107-20113. PubMed ID: 32936133
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transformation between 2D and 3D Covalent Organic Frameworks via Reversible [2 + 2] Cycloaddition.
    Jadhav T; Fang Y; Liu CH; Dadvand A; Hamzehpoor E; Patterson W; Jonderian A; Stein RS; Perepichka DF
    J Am Chem Soc; 2020 May; 142(19):8862-8870. PubMed ID: 32311256
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tinselenidene: a Two-dimensional Auxetic Material with Ultralow Lattice Thermal Conductivity and Ultrahigh Hole Mobility.
    Zhang LC; Qin G; Fang WZ; Cui HJ; Zheng QR; Yan QB; Su G
    Sci Rep; 2016 Feb; 6():19830. PubMed ID: 26830330
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiscale Modeling Strategy of 2D Covalent Organic Frameworks Confined at an Air-Water Interface.
    Ortega-Guerrero A; Sahabudeen H; Croy A; Dianat A; Dong R; Feng X; Cuniberti G
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):26411-26420. PubMed ID: 34034486
    [TBL] [Abstract][Full Text] [Related]  

  • 32. δ-Phosphorene: a two dimensional material with a highly negative Poisson's ratio.
    Wang H; Li X; Li P; Yang J
    Nanoscale; 2017 Jan; 9(2):850-855. PubMed ID: 27991639
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sign Change of Poisson's Ratio for Carbon Nanotube Sheets.
    Hall LJ; Coluci VR; Galvão DS; Kozlov ME; Zhang M; Dantas SO; Baughman RH
    Science; 2008 Apr; 320(5875):504-7. PubMed ID: 18440923
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anisotropic mechanical and optical response and negative Poisson's ratio in Mo
    Mortazavi B; Shahrokhi M; Makaremi M; Rabczuk T
    Nanotechnology; 2017 Mar; 28(11):115705. PubMed ID: 28205509
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An Overview of Mechanical Properties of Diamond-like Phases under Tension.
    Baimova JA
    Nanomaterials (Basel); 2024 Jan; 14(2):. PubMed ID: 38251094
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Emergence of an Antiferromagnetic Mott Insulating Phase in Hexagonal π-Conjugated Covalent Organic Frameworks.
    Thomas S; Li H; Bredas JL
    Adv Mater; 2019 Apr; 31(17):e1900355. PubMed ID: 30847999
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effective elastic mechanical properties of single layer graphene sheets.
    Scarpa F; Adhikari S; Srikantha Phani A
    Nanotechnology; 2009 Feb; 20(6):065709. PubMed ID: 19417403
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intrinsic auxeticity and mechanical anisotropy of Si
    Zhou J; Li J; Zhang J
    Nanoscale; 2023 Jul; 15(27):11714-11726. PubMed ID: 37394964
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystal orbital studies on the 1D silic-diyne nanoribbons and nanotubes.
    Zhu Y; Bai H; Huang Y
    J Phys Condens Matter; 2016 Feb; 28(4):045303. PubMed ID: 26744378
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.