These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30456698)

  • 1. Role of Ca
    Tiwari A; Singh P; Riyazat Khadim S; Singh AK; Singh U; Singh P; Asthana RK
    Protoplasma; 2019 May; 256(3):681-691. PubMed ID: 30456698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of calcium in the mitigation of heat stress in the cyanobacterium Anabaena PCC 7120.
    Tiwari A; Singh P; Asthana RK
    J Plant Physiol; 2016 Jul; 199():67-75. PubMed ID: 27302007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of salinity-induced photorespiratory glycolate metabolism in Anabaena sp. PCC 7120.
    Srivastava AK; Alexova R; Jeon YJ; Kohli GS; Neilan BA
    Microbiology (Reading); 2011 Mar; 157(Pt 3):911-917. PubMed ID: 21163840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription control of ribulose bisphosphate carboxylase/oxygenase activase and adjacent genes in Anabaena species.
    Li LA; Tabita FR
    J Bacteriol; 1994 Nov; 176(21):6697-706. PubMed ID: 7961423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcript levels of rbcR1, ntcA, and rbcL/S genes in cyanobacterium Anabaena sp. PCC 7120 are downregulated in response to cold and osmotic stress.
    Mori S; Castoreno A; Lammers PJ
    FEMS Microbiol Lett; 2002 Aug; 213(2):167-73. PubMed ID: 12167533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox-dependent chaperone/peroxidase function of 2-Cys-Prx from the cyanobacterium Anabaena PCC7120: role in oxidative stress tolerance.
    Banerjee M; Chakravarty D; Ballal A
    BMC Plant Biol; 2015 Feb; 15():60. PubMed ID: 25849452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of pepc gene expression in Anabaena sp. PCC 7120 and its effects on cyclic electron flow around photosystem I and tolerances to environmental stresses.
    Jia XH; Zhang PP; Shi DJ; Mi HL; Zhu JC; Huang XW; He PM
    J Integr Plant Biol; 2015 May; 57(5):468-76. PubMed ID: 25040477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ detection of transcripts for ribulose-1,5-bisphosphate carboxylase in cyanobacterial heterocysts.
    Madan AP; Nierzwicki-Bauer SA
    J Bacteriol; 1993 Nov; 175(22):7301-6. PubMed ID: 7693657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maximum activity of recombinant ribulose 1,5-bisphosphate carboxylase/oxygenase of Anabaena sp. strain CA requires the product of the rbcX gene.
    Li LA; Tabita FR
    J Bacteriol; 1997 Jun; 179(11):3793-6. PubMed ID: 9171433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The LysR-type transcription factor PacR is a global regulator of photosynthetic carbon assimilation in Anabaena.
    Picossi S; Flores E; Herrero A
    Environ Microbiol; 2015 Sep; 17(9):3341-51. PubMed ID: 25684321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen status and heat-stress-dependent differential expression of the cpn60 chaperonin gene influences thermotolerance in the cyanobacterium Anabaena.
    Rajaram H; Apte SK
    Microbiology (Reading); 2008 Jan; 154(Pt 1):317-325. PubMed ID: 18174150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological responses to salt stress of salt-adapted and directly salt (NaCl and NaCl+Na
    Swapnil P; Rai AK
    Protoplasma; 2018 May; 255(3):963-976. PubMed ID: 29352355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional and mechanistic insights into the differential effect of the toxicant 'Se(IV)' in the cyanobacterium Anabaena PCC 7120.
    Banerjee M; Kalwani P; Chakravarty D; Singh B; Ballal A
    Aquat Toxicol; 2021 Jul; 236():105839. PubMed ID: 34015754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overproduction of Anabaena 7120 ribulose-bisphosphate carboxylase/oxygenase in Escherichia coli.
    Larimer FW; Soper TS
    Gene; 1993 Apr; 126(1):85-92. PubMed ID: 8472962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron induced metabolic changes in the diazotrophic cyanobacterium Anabaena PCC 7120.
    Saxena RK; Raghuvanshi R; Singh S; Bisen PS
    Indian J Exp Biol; 2006 Oct; 44(10):849-51. PubMed ID: 17131917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of oxidative stress machinery determines the contrasting ability of cyanobacteria to adapt to Se(VI) or Se(IV).
    Banerjee M; Kalwani P; Chakravarty D; Pathak P; Agarwal R; Ballal A
    Plant Physiol Biochem; 2024 Jun; 211():108673. PubMed ID: 38733937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excess copper induces anoxygenic photosynthesis in Anabaena doliolum: a homology based proteomic assessment of its survival strategy.
    Bhargava P; Mishra Y; Srivastava AK; Narayan OP; Rai LC
    Photosynth Res; 2008 Apr; 96(1):61-74. PubMed ID: 18165907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impairment of ntcA gene revealed its role in regulating iron homeostasis, ROS production and cellular phenotype under iron deficiency in cyanobacterium Anabaena sp. PCC 7120.
    Kaushik MS; Srivastava M; Singh A; Mishra AK
    World J Microbiol Biotechnol; 2017 Aug; 33(8):158. PubMed ID: 28730560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of fatty acids and hydrocarbons in Anabaena 7120 and its ntcA mutant under calcium.
    Singh S; Verma E; Tiwari B; Niveshika ; Mishra AK
    J Basic Microbiol; 2017 Feb; 57(2):171-183. PubMed ID: 28165619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of FurA in Anabaena sp. PCC 7120 reveals new targets for this regulator involved in photosynthesis, iron uptake and cellular morphology.
    González A; Bes MT; Barja F; Peleato ML; Fillat MF
    Plant Cell Physiol; 2010 Nov; 51(11):1900-14. PubMed ID: 20926415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.