These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 30456928)

  • 1. Chromatin imaging and new technologies for imaging the nucleome.
    Szydlowski NA; Go JS; Hu YS
    Wiley Interdiscip Rev Syst Biol Med; 2019 May; 11(3):e1442. PubMed ID: 30456928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA and chromatin imaging with super-resolution fluorescence microscopy based on single-molecule localization.
    Flors C
    Biopolymers; 2011 May; 95(5):290-7. PubMed ID: 21184489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super-resolution microscopy approaches to nuclear nanostructure imaging.
    Cremer C; Szczurek A; Schock F; Gourram A; Birk U
    Methods; 2017 Jul; 123():11-32. PubMed ID: 28390838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Comparison and progress review of various super-resolution fluorescence imaging techniques].
    Chen J; Liu W; Xu Z
    Se Pu; 2021 Oct; 39(10):1055-1064. PubMed ID: 34505427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ChromoTrace: Computational reconstruction of 3D chromosome configurations for super-resolution microscopy.
    Barton C; Morganella S; Ødegård-Fougner Ø; Alexander S; Ries J; Fitzgerald T; Ellenberg J; Birney E
    PLoS Comput Biol; 2018 Mar; 14(3):e1006002. PubMed ID: 29522506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining Low Temperature Fluorescence DNA-Hybridization, Immunostaining, and Super-Resolution Localization Microscopy for Nano-Structure Analysis of ALU Elements and Their Influence on Chromatin Structure.
    Krufczik M; Sievers A; Hausmann A; Lee JH; Hildenbrand G; Schaufler W; Hausmann M
    Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28481278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracing DNA paths and RNA profiles in cultured cells and tissues with ORCA.
    Mateo LJ; Sinnott-Armstrong N; Boettiger AN
    Nat Protoc; 2021 Mar; 16(3):1647-1713. PubMed ID: 33619390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced microscopy methods for visualizing chromatin structure.
    Lakadamyali M; Cosma MP
    FEBS Lett; 2015 Oct; 589(20 Pt A):3023-30. PubMed ID: 25896023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible Live-Cell Labeling with Retro-engineered HaloTags Enables Long-Term High- and Super-Resolution Imaging.
    Holtmannspötter M; Wienbeuker E; Dellmann T; Watrinet I; Garcia-Sáez AJ; Johnsson K; Kurre R; Piehler J
    Angew Chem Int Ed Engl; 2023 Apr; 62(18):e202219050. PubMed ID: 36735334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Higher-Order Chromatin Organization Using 3D DNA Fluorescent In Situ Hybridization.
    Szabo Q; Cavalli G; Bantignies F
    Methods Mol Biol; 2021; 2157():221-237. PubMed ID: 32820407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From single molecules to life: microscopy at the nanoscale.
    Turkowyd B; Virant D; Endesfelder U
    Anal Bioanal Chem; 2016 Oct; 408(25):6885-911. PubMed ID: 27613013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing novel methods to image and visualize 3D genomes.
    Ma T; Chen L; Shi M; Niu J; Zhang X; Yang X; Zhanghao K; Wang M; Xi P; Jin D; Zhang M; Gao J
    Cell Biol Toxicol; 2018 Oct; 34(5):367-380. PubMed ID: 29577183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding DNA organization, damage, and repair with super-resolution fluorescence microscopy.
    Miriklis EL; Rozario AM; Rothenberg E; Bell TDM; Whelan DR
    Methods Appl Fluoresc; 2021 May; 9(3):. PubMed ID: 33765677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superresolution Microscopy for Visualization of Physical Contacts Between Chromosomes at Nanoscale Resolution.
    Yu Z; Potapova TA
    Methods Mol Biol; 2022; 2458():359-375. PubMed ID: 35103978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formamide denaturation of double-stranded DNA for fluorescence in situ hybridization (FISH) distorts nanoscale chromatin structure.
    Shim AR; Frederick J; Pujadas EM; Kuo T; Ye IC; Pritchard JA; Dunton CL; Gonzalez PC; Acosta N; Jain S; Anthony NM; Almassalha LM; Szleifer I; Backman V
    PLoS One; 2024; 19(5):e0301000. PubMed ID: 38805476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photostable and photoswitching fluorescent dyes for super-resolution imaging.
    Minoshima M; Kikuchi K
    J Biol Inorg Chem; 2017 Jul; 22(5):639-652. PubMed ID: 28083655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlative Conventional and Super-resolution Photoactivated Localization Microscopy (PALM) Imaging to Characterize Chromatin Structure and Dynamics in Live Mammalian Cells.
    Mehra D; Pucher EM
    Bio Protoc; 2023 Oct; 13(20):e4850. PubMed ID: 37900107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence in situ hybridization applications for super-resolution 3D structured illumination microscopy.
    Markaki Y; Smeets D; Cremer M; Schermelleh L
    Methods Mol Biol; 2013; 950():43-64. PubMed ID: 23086869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FISH Going Meso-Scale: A Microscopic Search for Chromatin Domains.
    Maslova A; Krasikova A
    Front Cell Dev Biol; 2021; 9():753097. PubMed ID: 34805161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Super-resolution microscopy of genome organization.
    Shim SH
    Genes Genomics; 2021 Mar; 43(3):281-287. PubMed ID: 33630271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.