BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30456935)

  • 1. Segmentation of yeast cell's bright-field image with an edge-tracing algorithm.
    Wang L; Li S; Sun Z; Wen G; Zheng F; Fu C; Li H
    J Biomed Opt; 2018 Nov; 23(11):1-7. PubMed ID: 30456935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FogBank: a single cell segmentation across multiple cell lines and image modalities.
    Chalfoun J; Majurski M; Dima A; Stuelten C; Peskin A; Brady M
    BMC Bioinformatics; 2014 Dec; 15(1):431. PubMed ID: 25547324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image processing and classification algorithm for yeast cell morphology in a microfluidic chip.
    Yang Yu B; Elbuken C; Ren CL; Huissoon JP
    J Biomed Opt; 2011 Jun; 16(6):066008. PubMed ID: 21721809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An algorithm to automate yeast segmentation and tracking.
    Doncic A; Eser U; Atay O; Skotheim JM
    PLoS One; 2013; 8(3):e57970. PubMed ID: 23520484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Segmentation and Quantitative Analysis of Apoptosis of Chinese Hamster Ovary Cells from Fluorescence Microscopy Images.
    Du Y; Budman HM; Duever TA
    Microsc Microanal; 2017 Jun; 23(3):569-583. PubMed ID: 28367787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic segmentation of echocardiography based on a morphological reconstruction algorithm.
    Shen XH; Li DY; Lin JL; Wang TF; Wen XH; Zheng CQ; Rao L; Tang H
    Space Med Med Eng (Beijing); 2005 Aug; 18(4):246-50. PubMed ID: 16224844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A robust morphological algorithm for automatic radiation field extraction and correlation of portal images.
    Wang H; Fallone BG
    Med Phys; 1994 Feb; 21(2):237-44. PubMed ID: 8177156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fully-automated, robust, and versatile algorithm for long-term budding yeast segmentation and tracking.
    Wood NE; Doncic A
    PLoS One; 2019; 14(3):e0206395. PubMed ID: 30917124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning approach to discriminate Saccharomyces cerevisiae yeast cells using sophisticated image features.
    Tleis MS; Verbeek FJ
    J Integr Bioinform; 2015 Oct; 12(3):276. PubMed ID: 26673792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image analysis algorithms for cell contour recognition in budding yeast.
    Kvarnström M; Logg K; Diez A; Bodvard K; Käll M
    Opt Express; 2008 Aug; 16(17):12943-57. PubMed ID: 18711533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Algorithms for cytoplasm segmentation of fluorescence labelled cells.
    Wählby C; Lindblad J; Vondrus M; Bengtsson E; Björkesten L
    Anal Cell Pathol; 2002; 24(2-3):101-11. PubMed ID: 12446959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of Normal and Apoptotic Cells from Fluorescence Microscopy Images Using Generalized Polynomial Chaos and Level Set Function.
    Du Y; Budman HM; Duever TA
    Microsc Microanal; 2016 Jun; 22(3):475-86. PubMed ID: 27142234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of image processing programs for accurate measurement of budding and fission yeast morphology.
    Suzuki G; Sawai H; Ohtani M; Nogami S; Sano-Kumagai F; Saka A; Yukawa M; Saito TL; Sese J; Hirata D; Morishita S; Ohya Y
    Curr Genet; 2006 Apr; 49(4):237-47. PubMed ID: 16397764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial foraging based edge detection for cell image segmentation.
    Pan Y; Zhou T; Xia Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3873-6. PubMed ID: 26737139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An automatic method for robust and fast cell detection in bright field images from high-throughput microscopy.
    Buggenthin F; Marr C; Schwarzfischer M; Hoppe PS; Hilsenbeck O; Schroeder T; Theis FJ
    BMC Bioinformatics; 2013 Oct; 14():297. PubMed ID: 24090363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optic Disc Boundary and Vessel Origin Segmentation of Fundus Images.
    Roychowdhury S; Koozekanani DD; Kuchinka SN; Parhi KK
    IEEE J Biomed Health Inform; 2016 Nov; 20(6):1562-1574. PubMed ID: 26316237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections.
    Wählby C; Sintorn IM; Erlandsson F; Borgefors G; Bengtsson E
    J Microsc; 2004 Jul; 215(Pt 1):67-76. PubMed ID: 15230877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell motility dynamics: a novel segmentation algorithm to quantify multi-cellular bright field microscopy images.
    Zaritsky A; Natan S; Horev J; Hecht I; Wolf L; Ben-Jacob E; Tsarfaty I
    PLoS One; 2011; 6(11):e27593. PubMed ID: 22096600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Instance Segmentation Dataset of Yeast Cells in Microstructures.
    Reich C; Prangemeier T; Francani AO; Koeppl H
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benchmark for multi-cellular segmentation of bright field microscopy images.
    Zaritsky A; Manor N; Wolf L; Ben-Jacob E; Tsarfaty I
    BMC Bioinformatics; 2013 Nov; 14():319. PubMed ID: 24195722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.