These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30456953)

  • 1. Porphyrins as Photoredox Catalysts in Csp
    de Souza AAN; Silva NS; Müller AV; Polo AS; Brocksom TJ; de Oliveira KT
    J Org Chem; 2018 Dec; 83(24):15077-15086. PubMed ID: 30456953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent applications of porphyrins as photocatalysts in organic synthesis: batch and continuous flow approaches.
    Costa E Silva R; Oliveira da Silva L; de Andrade Bartolomeu A; Brocksom TJ; de Oliveira KT
    Beilstein J Org Chem; 2020; 16():917-955. PubMed ID: 32461773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visible Light Mediated Photoredox Catalytic Arylation Reactions.
    Ghosh I; Marzo L; Das A; Shaikh R; König B
    Acc Chem Res; 2016 Aug; 49(8):1566-77. PubMed ID: 27482835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substituent Effects in the Photophysical and Electrochemical Properties of Meso-Tetraphenylporphyrin Derivatives.
    Millheim AC; Ponzano E; Moyano A
    Molecules; 2024 Aug; 29(15):. PubMed ID: 39125093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards meso-meso-linked porphyrin arrays and meso-aryl expanded porphyrins.
    Osuka A
    Chem Rec; 2015 Feb; 15(1):143-59. PubMed ID: 25316151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic routes to meso-patterned porphyrins.
    Lindsey JS
    Acc Chem Res; 2010 Feb; 43(2):300-11. PubMed ID: 19863076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lanthanide Photocatalysis.
    Qiao Y; Schelter EJ
    Acc Chem Res; 2018 Nov; 51(11):2926-2936. PubMed ID: 30335356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphonate-Derivatized Porphyrins for Photoelectrochemical Applications.
    Nayak A; Roy S; Sherman BD; Alibabaei L; Lapides AM; Brennaman MK; Wee KR; Meyer TJ
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):3853-60. PubMed ID: 26788585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Swallowtail porphyrins: synthesis, characterization and incorporation into porphyrin dyads.
    Thamyongkit P; Speckbacher M; Diers JR; Kee HL; Kirmaier C; Holten D; Bocian DF; Lindsey JS
    J Org Chem; 2004 May; 69(11):3700-10. PubMed ID: 15152999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, spectral, and structural studies of porphyrins having sterically hindered [η(5)-CpCo(η(4)-C4Ph4)] cobalt sandwich units at the meso positions.
    Keshav K; Kumar D; Elias AJ
    Inorg Chem; 2013 Nov; 52(21):12351-66. PubMed ID: 24152207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Breaking and Mending of meso-Tetraarylporphyrins: Transmuting the Pyrrolic Building Blocks.
    Brückner C
    Acc Chem Res; 2016 Jun; 49(6):1080-92. PubMed ID: 26967793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoinduced Arylation of Acridinium Salts: Tunable Photoredox Catalysts for C-O Bond Cleavage.
    Cao YX; Zhu G; Li Y; Le Breton N; Gourlaouen C; Choua S; Boixel J; Jacquot de Rouville HP; Soulé JF
    J Am Chem Soc; 2022 Apr; 144(13):5902-5909. PubMed ID: 35316065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetrachelate porphyrin chromophores for metal oxide semiconductor sensitization: effect of the spacer length and anchoring group position.
    Rochford J; Chu D; Hagfeldt A; Galoppini E
    J Am Chem Soc; 2007 Apr; 129(15):4655-65. PubMed ID: 17385856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Toolbox Approach To Construct Broadly Applicable Metal-Free Catalysts for Photoredox Chemistry: Deliberate Tuning of Redox Potentials and Importance of Halogens in Donor-Acceptor Cyanoarenes.
    Speckmeier E; Fischer TG; Zeitler K
    J Am Chem Soc; 2018 Nov; 140(45):15353-15365. PubMed ID: 30277767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of carbon-metal-carbon linkages on the optical, photophysical, and electrochemical properties of phosphametallacycle-linked coplanar porphyrin dimers.
    Matano Y; Matsumoto K; Hayashi H; Nakao Y; Kumpulainen T; Chukharev V; Tkachenko NV; Lemmetyinen H; Shimizu S; Kobayashi N; Sakamaki D; Ito A; Tanaka K; Imahori H
    J Am Chem Soc; 2012 Jan; 134(3):1825-39. PubMed ID: 22148321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reductive Activation of Aryl Chlorides by Tuning the Radical Cation Properties of N-Phenylphenothiazines as Organophotoredox Catalysts.
    Weick F; Hagmeyer N; Giraud M; Dietzek-Ivanšić B; Wagenknecht HA
    Chemistry; 2023 Nov; 29(66):e202302347. PubMed ID: 37589486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photophysical and electrochemical properties of meso-substituted thien-2-yl Zn(II) porphyrins.
    Rochford J; Botchway S; McGarvey JJ; Rooney AD; Pryce MT
    J Phys Chem A; 2008 Nov; 112(46):11611-8. PubMed ID: 18956854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triplet photophysics of gold(III) porphyrins.
    Eng MP; Ljungdahl T; Andréasson J; Mårtensson J; Albinsson B
    J Phys Chem A; 2005 Mar; 109(9):1776-84. PubMed ID: 16833506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of hydrogen bonding in the photophysical properties of isomeric tetrapyridylporphyrins in aprotic solvent.
    Kumar PH; Prashanthi S; Bangal PR
    J Phys Chem A; 2011 Feb; 115(5):631-42. PubMed ID: 21210681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Azobenzene-linked porphyrin-fullerene dyads.
    Schuster DI; Li K; Guldi DM; Palkar A; Echegoyen L; Stanisky C; Cross RJ; Niemi M; Tkachenko NV; Lemmetyinen H
    J Am Chem Soc; 2007 Dec; 129(51):15973-82. PubMed ID: 18052375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.