BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 30457030)

  • 1. Quantum chemical simulations revealed the toxicokinetic mechanisms of organic phosphorus flame retardants catalyzed by P450 enzymes.
    Fu Z; Chen J; Wang Y; Hong H; Xie H
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):272-291. PubMed ID: 30457030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and Toxicity Prediction of Biotransformation Molecules of Organophosphate Flame Retardants by Microbial Reactions in a Wastewater Treatment Plant.
    Choi Y; Kim SD
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34065337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity profiling of flame retardants in zebrafish embryos using a battery of assays for developmental toxicity, neurotoxicity, cardiotoxicity and hepatotoxicity toward human relevance.
    Alzualde A; Behl M; Sipes NS; Hsieh JH; Alday A; Tice RR; Paules RS; Muriana A; Quevedo C
    Neurotoxicol Teratol; 2018; 70():40-50. PubMed ID: 30312655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental circulatory failure caused by metabolites of organophosphorus flame retardants in zebrafish, Danio rerio.
    Lee JS; Morita Y; Kawai YK; Covaci A; Kubota A
    Chemosphere; 2020 May; 246():125738. PubMed ID: 31918085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Insight into Biotransformation Profiles of Organophosphorus Flame Retardants to Their Diester Metabolites by Cytochrome P450.
    Jia Y; Yao T; Ma G; Xu Q; Zhao X; Ding H; Wei X; Yu H; Wang Z
    Molecules; 2022 Apr; 27(9):. PubMed ID: 35566150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis.
    van der Veen I; de Boer J
    Chemosphere; 2012 Aug; 88(10):1119-53. PubMed ID: 22537891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a rat physiologically based kinetic model (PBK) for three organophosphate flame retardants (TDCIPP, TCIPP, TCEP).
    Deepika D; Sharma RP; Schuhmacher M; Kumar V
    Toxicol Lett; 2023 Jul; 383():128-140. PubMed ID: 37356742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro biolayer interferometry analysis of acetylcholinesterase as a potential target of aryl-organophosphorus flame-retardants.
    Shi Q; Guo W; Shen Q; Han J; Lei L; Chen L; Yang L; Feng C; Zhou B
    J Hazard Mater; 2021 May; 409():124999. PubMed ID: 33454525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic Mechanism of Aryl Phosphorus Flame Retardants by Cytochromes P450: A Combined Experimental and Computational Study on Triphenyl Phosphate.
    Zhang Q; Ji S; Chai L; Yang F; Zhao M; Liu W; Schüürmann G; Ji L
    Environ Sci Technol; 2018 Dec; 52(24):14411-14421. PubMed ID: 30421920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preliminary ecotoxicity hazard evaluation of DOPO-HQ as a potential alternative to halogenated flame retardants.
    Liu M; Yin H; Chen X; Yang J; Liang Y; Zhang J; Yang F; Deng Y; Lu S
    Chemosphere; 2018 Feb; 193():126-133. PubMed ID: 29128559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aryl organophosphate flame retardants induced cardiotoxicity during zebrafish embryogenesis: by disturbing expression of the transcriptional regulators.
    Du Z; Wang G; Gao S; Wang Z
    Aquat Toxicol; 2015 Apr; 161():25-32. PubMed ID: 25661707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro endocrine disruption potential of organophosphate flame retardants via human nuclear receptors.
    Kojima H; Takeuchi S; Itoh T; Iida M; Kobayashi S; Yoshida T
    Toxicology; 2013 Dec; 314(1):76-83. PubMed ID: 24051214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pilot-scale incineration of wastes with high content of chlorinated and non-halogenated organophosphorus flame retardants used as alternatives for PBDEs.
    Matsukami H; Kose T; Watanabe M; Takigami H
    Sci Total Environ; 2014 Sep; 493():672-81. PubMed ID: 24992460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro biotransformation of tris(1,3-dichloro-2-propyl) phosphate and triphenyl phosphate by mouse liver microsomes: Kinetics and key CYP isoforms.
    Chen MH; Zhang SH; Jia SM; Wang LJ; Ma WL
    Chemosphere; 2022 Feb; 288(Pt 1):132504. PubMed ID: 34627810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicokinetic of tris(2-butoxyethyl) phosphate (TBOEP) in humans following single oral administration.
    Völkel W; Fuchs V; Wöckner M; Fromme H
    Arch Toxicol; 2018 Feb; 92(2):651-660. PubMed ID: 28956089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First insights in the metabolism of phosphate flame retardants and plasticizers using human liver fractions.
    Van den Eede N; Maho W; Erratico C; Neels H; Covaci A
    Toxicol Lett; 2013 Oct; 223(1):9-15. PubMed ID: 23994729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mineralisation and primary biodegradation of aromatic organophosphorus flame retardants in activated sludge.
    Jurgens SS; Helmus R; Waaijers SL; Uittenbogaard D; Dunnebier D; Vleugel M; Kraak MH; de Voogt P; Parsons JR
    Chemosphere; 2014 Sep; 111():238-42. PubMed ID: 24997924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of alternative assays to identify and prioritize organophosphorus flame retardants for potential developmental and neurotoxicity.
    Behl M; Hsieh JH; Shafer TJ; Mundy WR; Rice JR; Boyd WA; Freedman JH; Hunter ES; Jarema KA; Padilla S; Tice RR
    Neurotoxicol Teratol; 2015; 52(Pt B):181-93. PubMed ID: 26386178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organophosphorus flame retardant induced hepatotoxicity and brain AChE inhibition on zebrafish (Danio rerio).
    Ramesh M; Angitha S; Haritha S; Poopal RK; Ren Z; Umamaheswari S
    Neurotoxicol Teratol; 2020; 82():106919. PubMed ID: 32853706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative genotoxicity and nephrotoxicity studies of the two halogenated flame retardants tris(1,3-dichloro-2-propyl)phosphate and tris(2,3-dibromopropyl)phosphate.
    Søderlund EJ; Dybing E; Holme JA; Hongslo JK; Rivedal E; Sanner T; Nelson SD
    Acta Pharmacol Toxicol (Copenh); 1985 Jan; 56(1):20-9. PubMed ID: 3883695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.