These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 30457153)

  • 1. Colloidal stability dictates drop breakup under electric fields.
    Lanauze JA; Sengupta R; Bleier BJ; Yezer BA; Khair AS; Walker LM
    Soft Matter; 2018 Nov; 14(46):9351-9360. PubMed ID: 30457153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Nonionic Surfactant on the Deformation and Breakup of a Drop in an Electric Field.
    Ha JW; Yang SM
    J Colloid Interface Sci; 1998 Oct; 206(1):195-204. PubMed ID: 9761644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrolytic drops in an electric field: A numerical study of drop deformation and breakup.
    Pillai R; Berry JD; Harvie DJ; Davidson MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013007. PubMed ID: 26274270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catastrophic drop breakup in electric field.
    Raut JS; Akella S; Singh A; Naik VM
    Langmuir; 2009 May; 25(9):4829-34. PubMed ID: 19334721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breakup of a leaky dielectric drop in a uniform electric field.
    Dong Q; Sau A
    Phys Rev E; 2019 Apr; 99(4-1):043106. PubMed ID: 31108624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breakup of a Multiple Emulsion Drop in a Uniform Electric Field.
    Ha JW; Yang SM
    J Colloid Interface Sci; 1999 May; 213(1):92-100. PubMed ID: 10191011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental validation of a numerical model for predicting the trajectory of blood drops in typical crime scene conditions, including droplet deformation and breakup, with a study of the effect of indoor air currents and wind on typical spatter drop trajectories.
    Kabaliuk N; Jermy MC; Williams E; Laber TL; Taylor MC
    Forensic Sci Int; 2014 Dec; 245():107-20. PubMed ID: 25447183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Particle-covered drops in electric fields: drop deformation and surface particle organization.
    Mikkelsen A; Khobaib K; Eriksen FK; Måløy KJ; Rozynek Z
    Soft Matter; 2018 Jul; 14(26):5442-5451. PubMed ID: 29901062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of soluble surfactants on the deformation and breakup of stretching liquid bridges.
    Liao YC; Subramani HJ; Franses EI; Basaran OA
    Langmuir; 2004 Nov; 20(23):9926-30. PubMed ID: 15518476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure-driven motion of surfactant-laden drops through cylindrical capillaries: effect of surfactant solubility.
    Johnson RA; Borhan A
    J Colloid Interface Sci; 2003 May; 261(2):529-41. PubMed ID: 16256565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanics of Pickering Drops Probed by Electric Field-Induced Stress.
    Mikkelsen A; Dommersnes P; Rozynek Z; Gholamipour-Shirazi A; Carvalho MDS; Fossum JO
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability of the Shape of a Viscous Drop under Buoyancy-Driven Translation in a Hele-Shaw Cell.
    Gupta NR; Nadim A; Haj-Hariri H; Borhan A
    J Colloid Interface Sci; 2000 Feb; 222(1):107-116. PubMed ID: 10655132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of Drop Formation in an Electric Field.
    Notz PK; Basaran OA
    J Colloid Interface Sci; 1999 May; 213(1):218-237. PubMed ID: 10191025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breakup of bubbles and drops in steadily sheared foams and concentrated emulsions.
    Golemanov K; Tcholakova S; Denkov ND; Ananthapadmanabhan KP; Lips A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051405. PubMed ID: 19113128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breakup characteristics of aqueous droplet with surfactant in oil under direct current electric field.
    Luo X; Yan H; Huang X; Yang D; Wang J; He L
    J Colloid Interface Sci; 2017 Nov; 505():460-466. PubMed ID: 28633117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Destabilization of Pickering emulsions using external electric fields.
    Hwang K; Singh P; Aubry N
    Electrophoresis; 2010 Mar; 31(5):850-9. PubMed ID: 20191547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drop formation via breakup of a liquid bridge in an AC electric field.
    Lee BS; Cho HJ; Lee JG; Huh N; Choi JW; Kang IS
    J Colloid Interface Sci; 2006 Oct; 302(1):294-307. PubMed ID: 16797576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-stream migration of drops suspended in Poiseuille flow in the presence of an electric field.
    Nath B; Biswas G; Dalal A; Sahu KC
    Phys Rev E; 2018 Jun; 97(6-1):063106. PubMed ID: 30011518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavior of charged and uncharged drops in high alternating tangential electric fields.
    Löwe JM; Hinrichsen V; Roisman IV; Tropea C
    Phys Rev E; 2020 Feb; 101(2-1):023102. PubMed ID: 32168636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical investigation of the effect of insoluble surfactants on drop deformation and breakup in simple shear flow.
    Bazhlekov IB; Anderson PD; Meijer HE
    J Colloid Interface Sci; 2006 Jun; 298(1):369-94. PubMed ID: 16412455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.