These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30457434)

  • 21. Priming to protect maize from Fusarium verticillioides and its fumonisin accumulation.
    Aguado A; Savoie JM; Chéreau S; Ducos C; Aguilar M; Ferrer N; Aguilar M; Pinson-Gadais L; Richard-Forget F
    J Sci Food Agric; 2019 Jan; 99(1):64-72. PubMed ID: 29797333
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antagonistic interactions between maize seeds microbiome species and the late wilt disease agent,
    Degani O; Ayoub A; Dimant E; Gordani A
    Front Fungal Biol; 2024; 5():1436759. PubMed ID: 39170729
    [No Abstract]   [Full Text] [Related]  

  • 23. Maize root culture as a model system for studying azoxystrobin biotransformation in plants.
    Gautam M; Elhiti M; Fomsgaard IS
    Chemosphere; 2018 Mar; 195():624-631. PubMed ID: 29287271
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crop Rotation and Minimal Tillage Selectively Affect Maize Growth Promotion under Late Wilt Disease Stress.
    Degani O; Gordani A; Becher P; Chen A; Rabinovitz O
    J Fungi (Basel); 2022 May; 8(6):. PubMed ID: 35736069
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Review: Late Wilt of Maize-The Pathogen, the Disease, Current Status, and Future Perspective.
    Degani O
    J Fungi (Basel); 2021 Nov; 7(11):. PubMed ID: 34829276
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differentiation of Pythium spp. from vegetable crops with molecular markers and sensitivity to azoxystrobin and mefenoxam.
    Matić S; Gilardi G; Gisi U; Gullino ML; Garibaldi A
    Pest Manag Sci; 2019 Feb; 75(2):356-365. PubMed ID: 29888848
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a powder formulation based on Bacillus cereus sensu lato strain B25 spores for biological control of Fusarium verticillioides in maize plants.
    Martínez-Álvarez JC; Castro-Martínez C; Sánchez-Peña P; Gutiérrez-Dorado R; Maldonado-Mendoza IE
    World J Microbiol Biotechnol; 2016 May; 32(5):75. PubMed ID: 27038945
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro interactions between Fusarium verticillioides and Ustilago maydis through real-time PCR and metabolic profiling.
    Rodriguez Estrada AE; Hegeman A; Kistler HC; May G
    Fungal Genet Biol; 2011 Sep; 48(9):874-85. PubMed ID: 21703356
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid detection and identification of the bacterium Pantoea stewartii in maize by TaqMan real-time PCR assay targeting the cpsD gene.
    Tambong JT; Mwange KN; Bergeron M; Ding T; Mandy F; Reid LM; Zhu X
    J Appl Microbiol; 2008 May; 104(5):1525-37. PubMed ID: 18179542
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrated Management of the Cotton Charcoal Rot Disease Using Biological Agents and Chemical Pesticides.
    Degani O; Chen A; Dimant E; Gordani A; Malul T; Rabinovitz O
    J Fungi (Basel); 2024 Mar; 10(4):. PubMed ID: 38667921
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Field performance of maize grown from Fusarium verticillioides-inoculated seed.
    Yates IE; Widstrom NW; Bacon CW; Glenn A; Hinton DM; Sparks D; Jaworski AJ
    Mycopathologia; 2005 Jan; 159(1):65-73. PubMed ID: 15750733
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A real-time PCR assay for detection and quantification of Verticillium dahliae in spinach seed.
    Duressa D; Rauscher G; Koike ST; Mou B; Hayes RJ; Maruthachalam K; Subbarao KV; Klosterman SJ
    Phytopathology; 2012 Apr; 102(4):443-51. PubMed ID: 22236050
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Real-Time PCR Assay for Detection of Sphacelotheca reiliana Infection in Maize (Zea mays) Seedlings and Evaluation of Seed Treatment Efficacy.
    Anderson SJ; Simmons HE; Munkvold GP
    Plant Dis; 2015 Dec; 99(12):1847-1852. PubMed ID: 30699512
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Infection and ultrastructure of conidia and pycnidia of Stenocarpella maydis in maize.
    Xia Z; Wu H; Achar PN
    J Food Prot; 2011 Apr; 74(4):676-80. PubMed ID: 21477487
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioactive metabolites from Stenocarpella maydis, a stalk and ear rot pathogen of maize.
    Wicklow DT; Rogers KD; Dowd PF; Gloer JB
    Fungal Biol; 2011 Feb; 115(2):133-42. PubMed ID: 21315311
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Use of PCR for detection of maize seeds infected with the fungus Fusarium moniliforme Sheldon var.lactis].
    Sidorenko AP; Zaiakina GV; Sokolova EV; Sozinov AA
    Tsitol Genet; 2001; 35(1):34-8. PubMed ID: 11589042
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular differentiation of Pantoea stewartii subsp. indologenes from subspecies stewartii and identification of new isolates from maize seeds.
    Gehring I; Wensing A; Gernold M; Wiedemann W; Coplin DL; Geider K
    J Appl Microbiol; 2014 Jun; 116(6):1553-62. PubMed ID: 24905218
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microencapsulation of seed-coating tebuconazole and its effects on physiology and biochemistry of maize seedlings.
    Yang D; Wang N; Yan X; Shi J; Zhang M; Wang Z; Yuan H
    Colloids Surf B Biointerfaces; 2014 Feb; 114():241-6. PubMed ID: 24200952
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Allozyme-specific modification of a maize seed chitinase by a protein secreted by the fungal pathogen Stenocarpella maydis.
    Naumann TA; Wicklow DT
    Phytopathology; 2010 Jul; 100(7):645-54. PubMed ID: 20528182
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sensitivity to azoxystrobin in Didymella bryoniae isolates collected before and after field use of strobilurin fungicides.
    Keinath AP
    Pest Manag Sci; 2009 Oct; 65(10):1090-6. PubMed ID: 19488995
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.