These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 30457624)

  • 1. Tunable interactions between particles in conically rotating electric fields.
    Komarov KA; Kryuchkov NP; Yurchenko SO
    Soft Matter; 2018 Dec; 14(47):9657-9674. PubMed ID: 30457624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diagrammatics of tunable interactions in anisotropic colloids in rotating electric or magnetic fields: New kind of dipole-like interactions.
    Komarov KA; Yurchenko SO
    J Chem Phys; 2021 Sep; 155(11):114107. PubMed ID: 34551538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Core-shell particles in rotating electric and magnetic fields: Designing tunable interactions via particle engineering.
    Komarov KA; Mantsevich VN; Yurchenko SO
    J Chem Phys; 2021 Aug; 155(8):084903. PubMed ID: 34470364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diagrammatic method for tunable interactions in colloidal suspensions in rotating electric or magnetic fields.
    Komarov KA; Yarkov AV; Yurchenko SO
    J Chem Phys; 2019 Dec; 151(24):244103. PubMed ID: 31893897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colloids in rotating electric and magnetic fields: designing tunable interactions with spatial field hodographs.
    Komarov KA; Yurchenko SO
    Soft Matter; 2020 Sep; 16(35):8155-8168. PubMed ID: 32797126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable two-dimensional assembly of colloidal particles in rotating electric fields.
    Yakovlev EV; Komarov KA; Zaytsev KI; Kryuchkov NP; Koshelev KI; Zotov AK; Shelestov DA; Tolstoguzov VL; Kurlov VN; Ivlev AV; Yurchenko SO
    Sci Rep; 2017 Oct; 7(1):13727. PubMed ID: 29062107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple models for two-dimensional tunable colloidal crystals in rotating ac electric fields.
    Elsner N; Royall CP; Vincent B; Snoswell DR
    J Chem Phys; 2009 Apr; 130(15):154901. PubMed ID: 19388766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2D colloids in rotating electric fields: A laboratory of strong tunable three-body interactions.
    Yakovlev EV; Kryuchkov NP; Korsakova SA; Dmitryuk NA; Ovcharov PV; Andronic MM; Rodionov IA; Sapelkin AV; Yurchenko SO
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):564-574. PubMed ID: 34626996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multidirectional colloidal assembly in concurrent electric and magnetic fields.
    Bharti B; Kogler F; Hall CK; Klapp SH; Velev OD
    Soft Matter; 2016 Oct; 12(37):7747-58. PubMed ID: 27537850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Developments in the Methods and Applications of Electrostatic Theory.
    Besley E
    Acc Chem Res; 2023 Sep; 56(17):2267-2277. PubMed ID: 37585560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic assembly route to colloidal responsive photonic nanostructures.
    He L; Wang M; Ge J; Yin Y
    Acc Chem Res; 2012 Sep; 45(9):1431-40. PubMed ID: 22578015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental validation of interpolation method for pair correlations in model crystals.
    Yakovlev EV; Chaudhuri M; Kryuchkov NP; Ovcharov PV; Sapelkin AV; Yurchenko SO
    J Chem Phys; 2019 Sep; 151(11):114502. PubMed ID: 31542035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Symmetry breaking and interaction of colloidal particles in nematic liquid crystals.
    Lev BI; Chernyshuk SB; Tomchuk PM; Yokoyama H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021709. PubMed ID: 11863547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electric Field Assembly of Colloidal Superstructures.
    Demirörs AF; Alison L
    J Phys Chem Lett; 2018 Aug; 9(15):4437-4443. PubMed ID: 30028630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyion-induced aggregation of oppositely charged liposomes and charged colloidal particles: the many facets of complex formation in low-density colloidal systems.
    Cametti C
    Chem Phys Lipids; 2008 Oct; 155(2):63-73. PubMed ID: 18718458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repulsion-attraction switching of nematic colloids formed by liquid crystal dispersions of polygonal prisms.
    Senyuk B; Liu Q; Nystrom PD; Smalyukh II
    Soft Matter; 2017 Oct; 13(40):7398-7405. PubMed ID: 28951927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theory of elastic interaction between colloidal particles in a nematic cell in the presence of an external electric or magnetic field.
    Chernyshuk SB; Tovkach OM; Lev BI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011706. PubMed ID: 22400582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly of magnetically tunable photonic crystals in nonpolar solvents.
    Ge J; He L; Goebl J; Yin Y
    J Am Chem Soc; 2009 Mar; 131(10):3484-6. PubMed ID: 19236050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forces acting on dielectric colloidal spheres at a water/nonpolar fluid interface in an external electric field. 2. Charged particles.
    Danov KD; Kralchevsky PA
    J Colloid Interface Sci; 2013 Sep; 405():269-77. PubMed ID: 23759324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particle selection through topographic templates in nematic colloids.
    Eskandari Z; Silvestre NM; Telo da Gama MM; Ejtehadi MR
    Soft Matter; 2014 Dec; 10(48):9681-7. PubMed ID: 25365252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.