BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 30457695)

  • 1. Microwave Flow: A Perspective on Reactor and Microwave Configurations and the Emergence of Tunable Single-Mode Heating Toward Large-Scale Applications.
    Barham JP; Koyama E; Norikane Y; Ohneda N; Yoshimura T
    Chem Rec; 2019 Jan; 19(1):188-203. PubMed ID: 30457695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Practical and Scalable Organic Reactions with Flow Microwave Apparatus.
    Egami H; Hamashima Y
    Chem Rec; 2019 Jan; 19(1):157-171. PubMed ID: 30511806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave Flow Chemistry as a Methodology in Organic Syntheses, Enzymatic Reactions, and Nanoparticle Syntheses.
    Horikoshi S; Serpone N
    Chem Rec; 2019 Jan; 19(1):118-139. PubMed ID: 30277645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scale-up in microwave-accelerated organic synthesis.
    Lehmann H
    Ernst Schering Found Symp Proc; 2006; (3):133-49. PubMed ID: 17695714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics.
    Gawande MB; Shelke SN; Zboril R; Varma RS
    Acc Chem Res; 2014 Apr; 47(4):1338-48. PubMed ID: 24666323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the load size on the efficiency of microwave heating under stop flow and continuous flow conditions.
    Patil NG; Rebrov EV; Eränen K; Benaskar F; Meuldijk J; Mikkola JP; Hessel V; Hulshof LA; Murzin DY; Schouten JC
    J Microw Power Electromagn Energy; 2012; 46(2):83-92. PubMed ID: 24427859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The microwave-to-flow paradigm: translating high-temperature batch microwave chemistry to scalable continuous-flow processes.
    Glasnov TN; Kappe CO
    Chemistry; 2011 Oct; 17(43):11956-68. PubMed ID: 21932289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave Irradiation in Micro- Meso-Fluidic Systems; Hybrid Technology has Issued the Challenge.
    Tagliapietra S; Calcio Gaudino E; Martina K; Barge A; Cravotto G
    Chem Rec; 2019 Jan; 19(1):98-117. PubMed ID: 30044531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave and continuous flow technologies in drug discovery.
    Sadler S; Moeller AR; Jones GB
    Expert Opin Drug Discov; 2012 Dec; 7(12):1107-28. PubMed ID: 23004354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave reactions under continuous flow conditions.
    Baxendale IR; Hayward JJ; Ley SV
    Comb Chem High Throughput Screen; 2007 Dec; 10(10):802-36. PubMed ID: 18288946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applications of microwave-assisted organic synthesis on the multigram scale.
    Wolkenberg SE; Shipe WD; Lindsley CW; Guare JP; Pawluczyk JM
    Curr Opin Drug Discov Devel; 2005 Nov; 8(6):701-8. PubMed ID: 16312146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Access to small size distributions of nanoparticles by microwave-assisted synthesis. Formation of Ag nanoparticles in aqueous carboxymethylcellulose solutions in batch and continuous-flow reactors.
    Horikoshi S; Abe H; Torigoe K; Abe M; Serpone N
    Nanoscale; 2010 Aug; 2(8):1441-7. PubMed ID: 20820732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perspectives of Microwaves-Enhanced Heterogeneous Catalytic Gas-Phase Processes in Flow Systems.
    Stankiewicz A; Sarabi FE; Baubaid A; Yan P; Nigar H
    Chem Rec; 2019 Jan; 19(1):40-50. PubMed ID: 30106499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow through reactors for organic chemistry: directly electrically heated tubular mini reactors as an enabling technology for organic synthesis.
    Kunz U; Turek T
    Beilstein J Org Chem; 2009 Nov; 5():70. PubMed ID: 20300506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled microwave heating in modern organic synthesis.
    Kappe CO
    Angew Chem Int Ed Engl; 2004 Nov; 43(46):6250-84. PubMed ID: 15558676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autohydrolysis pretreatment of Arundo donax: a comparison between microwave-assisted batch and fast heating rate flow-through reaction systems.
    Galia A; Schiavo B; Antonetti C; Galletti AM; Interrante L; Lessi M; Scialdone O; Valenti MG
    Biotechnol Biofuels; 2015; 8():218. PubMed ID: 26697107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unraveling the mysteries of microwave chemistry using silicon carbide reactor technology.
    Kappe CO
    Acc Chem Res; 2013 Jul; 46(7):1579-87. PubMed ID: 23463987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave irradiation--A green and efficient way to pretreat biomass.
    Li H; Qu Y; Yang Y; Chang S; Xu J
    Bioresour Technol; 2016 Jan; 199():34-41. PubMed ID: 26342787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of Medicinally Privileged Heterocycles through Dielectric Heating.
    Bandyopadhyay D; Banik BK
    Curr Med Chem; 2017; 24(41):4596-4626. PubMed ID: 28240166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward rapid, "green", predictable microwave-assisted synthesis.
    Roberts BA; Strauss CR
    Acc Chem Res; 2005 Aug; 38(8):653-61. PubMed ID: 16104688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.