These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 30457841)

  • 1. A Family Divided: Distinct Structural and Mechanistic Features of the SpoU-TrmD (SPOUT) Methyltransferase Superfamily.
    Krishnamohan A; Jackman JE
    Biochemistry; 2019 Feb; 58(5):336-345. PubMed ID: 30457841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic features of the atypical tRNA m1G9 SPOUT methyltransferase, Trm10.
    Krishnamohan A; Jackman JE
    Nucleic Acids Res; 2017 Sep; 45(15):9019-9029. PubMed ID: 28911116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A flexible cofactor-binding loop in the novel arginine methyltransferase Sfm1.
    Wang C; Zeng J; Xie W
    FEBS Lett; 2017 Jan; 591(2):433-441. PubMed ID: 27990635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tied up in knots: Untangling substrate recognition by the SPOUT methyltransferases.
    Strassler SE; Bowles IE; Dey D; Jackman JE; Conn GL
    J Biol Chem; 2022 Oct; 298(10):102393. PubMed ID: 35988649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transfer RNA methyltransferases with a SpoU-TrmD  (SPOUT) fold and their modified nucleosides in  tRNA.
    Hori H
    Biomolecules; 2017 Feb; 7(1):. PubMed ID: 28264529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of tRNA m1G9 methyltransferase Trm10: insight into the catalytic mechanism and recognition of tRNA substrate.
    Shao Z; Yan W; Peng J; Zuo X; Zou Y; Li F; Gong D; Ma R; Wu J; Shi Y; Zhang Z; Teng M; Li X; Gong Q
    Nucleic Acids Res; 2014 Jan; 42(1):509-25. PubMed ID: 24081582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for methyl-donor-dependent and sequence-specific binding to tRNA substrates by knotted methyltransferase TrmD.
    Ito T; Masuda I; Yoshida K; Goto-Ito S; Sekine S; Suh SW; Hou YM; Yokoyama S
    Proc Natl Acad Sci U S A; 2015 Aug; 112(31):E4197-205. PubMed ID: 26183229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in substrate selectivities of the SPOUT superfamily of methyltransferases.
    Toyooka T; Hori H
    Nucleic Acids Symp Ser (Oxf); 2007; (51):445-6. PubMed ID: 18029778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. tRNA recognition by a bacterial tRNA Xm32 modification enzyme from the SPOUT methyltransferase superfamily.
    Liu RJ; Long T; Zhou M; Zhou XL; Wang ED
    Nucleic Acids Res; 2015 Sep; 43(15):7489-503. PubMed ID: 26202969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of catalytic cycle by a pair of analogous tRNA modification enzymes.
    Christian T; Lahoud G; Liu C; Hou YM
    J Mol Biol; 2010 Jul; 400(2):204-17. PubMed ID: 20452364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small methyltransferase RlmH assembles a composite active site to methylate a ribosomal pseudouridine.
    Koh CS; Madireddy R; Beane TJ; Zamore PD; Korostelev AA
    Sci Rep; 2017 Apr; 7(1):969. PubMed ID: 28428565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and biochemical insights into the 2'-O-methylation of pyrimidines 34 in tRNA.
    Pang P; Deng X; Wang Z; Xie W
    FEBS J; 2017 Jul; 284(14):2251-2263. PubMed ID: 28544464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The tRNA recognition mechanism of the minimalist SPOUT methyltransferase, TrmL.
    Liu RJ; Zhou M; Fang ZP; Wang M; Zhou XL; Wang ED
    Nucleic Acids Res; 2013 Sep; 41(16):7828-42. PubMed ID: 23804755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and evolutionary bioinformatics of the SPOUT superfamily of methyltransferases.
    Tkaczuk KL; Dunin-Horkawicz S; Purta E; Bujnicki JM
    BMC Bioinformatics; 2007 Mar; 8():73. PubMed ID: 17338813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the cofactor-binding site in the SPOUT-fold methyltransferases by computational docking of S-adenosylmethionine to three crystal structures.
    Kurowski MA; Sasin JM; Feder M; Debski J; Bujnicki JM
    BMC Bioinformatics; 2003 Mar; 4():9. PubMed ID: 12689347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure and mutational study of a unique SpoU family archaeal methylase that forms 2'-O-methylcytidine at position 56 of tRNA.
    Kuratani M; Bessho Y; Nishimoto M; Grosjean H; Yokoyama S
    J Mol Biol; 2008 Jan; 375(4):1064-75. PubMed ID: 18068186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methyl transfer by substrate signaling from a knotted protein fold.
    Christian T; Sakaguchi R; Perlinska AP; Lahoud G; Ito T; Taylor EA; Yokoyama S; Sulkowska JI; Hou YM
    Nat Struct Mol Biol; 2016 Oct; 23(10):941-948. PubMed ID: 27571175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and biochemical analysis of the dual-specificity Trm10 enzyme from
    Singh RK; Feller A; Roovers M; Van Elder D; Wauters L; Droogmans L; Versées W
    RNA; 2018 Aug; 24(8):1080-1092. PubMed ID: 29848639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Untying a Knotted SPOUT RNA Methyltransferase by Circular Permutation Results in a Domain-Swapped Dimer.
    Ko KT; Hu IC; Huang KF; Lyu PC; Hsu SD
    Structure; 2019 Aug; 27(8):1224-1233.e4. PubMed ID: 31104814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of tRNA(m1G37)methyltransferase: insights into tRNA recognition.
    Ahn HJ; Kim HW; Yoon HJ; Lee BI; Suh SW; Yang JK
    EMBO J; 2003 Jun; 22(11):2593-603. PubMed ID: 12773376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.