These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 30457918)

  • 1. Visual Simultaneity Judgments Activate a Bilateral Frontoparietal Timing System.
    Hanayik T; Yourganov G; Newman-Norlund R; Gibson M; Rorden C
    J Cogn Neurosci; 2019 Mar; 31(3):431-441. PubMed ID: 30457918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural correlates of audiovisual temporal processing--comparison of temporal order and simultaneity judgments.
    Binder M
    Neuroscience; 2015 Aug; 300():432-47. PubMed ID: 25982561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bottom-Up and Top-Down Factors Differentially Influence Stimulus Representations Across Large-Scale Attentional Networks.
    Long NM; Kuhl BA
    J Neurosci; 2018 Mar; 38(10):2495-2504. PubMed ID: 29437930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auditory and visual connectivity gradients in frontoparietal cortex.
    Braga RM; Hellyer PJ; Wise RJ; Leech R
    Hum Brain Mapp; 2017 Jan; 38(1):255-270. PubMed ID: 27571304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basal ganglia and supplementary motor area subtend duration perception: an fMRI study.
    Ferrandez AM; Hugueville L; Lehéricy S; Poline JB; Marsault C; Pouthas V
    Neuroimage; 2003 Aug; 19(4):1532-44. PubMed ID: 12948709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the dorsal attention network in distracter suppression based on features.
    Lanssens A; Pizzamiglio G; Mantini D; Gillebert CR
    Cogn Neurosci; 2020 Jan; 11(1-2):37-46. PubMed ID: 31674886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring for target objects: activation of right frontal and parietal cortices with increasing time on task.
    Coull JT; Frackowiak RS; Frith CD
    Neuropsychologia; 1998 Dec; 36(12):1325-34. PubMed ID: 9863686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frontoparietal activation during visual conjunction search: Effects of bottom-up guidance and adult age.
    Madden DJ; Parks EL; Tallman CW; Boylan MA; Hoagey DA; Cocjin SB; Johnson MA; Chou YH; Potter GG; Chen NK; Packard LE; Siciliano RE; Monge ZA; Diaz MT
    Hum Brain Mapp; 2017 Apr; 38(4):2128-2149. PubMed ID: 28052456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural Mechanisms of Temporal Resolution of Attention.
    Howard CJ; Bashir N; Chechlacz M; Humphreys GW
    Cereb Cortex; 2016 Jul; 26(7):2952-69. PubMed ID: 26033892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Pivotal Role of the Right Parietal Lobe in Temporal Attention.
    Agosta S; Magnago D; Tyler S; Grossman E; Galante E; Ferraro F; Mazzini N; Miceli G; Battelli L
    J Cogn Neurosci; 2017 May; 29(5):805-815. PubMed ID: 27991181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal-Order-Based Attentional Priority Modulates Mnemonic Representations in Parietal and Frontal Cortices.
    Yu Q; Shim WM
    Cereb Cortex; 2019 Jul; 29(7):3182-3192. PubMed ID: 30124789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual Experience Shapes the Neural Networks Remapping Touch into External Space.
    Crollen V; Lazzouni L; Rezk M; Bellemare A; Lepore F; Collignon O
    J Neurosci; 2017 Oct; 37(42):10097-10103. PubMed ID: 28947578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal frontoparietal network.
    Shulman GL; Pope DL; Astafiev SV; McAvoy MP; Snyder AZ; Corbetta M
    J Neurosci; 2010 Mar; 30(10):3640-51. PubMed ID: 20219998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frontal cortex differentiates between free and imposed target selection in multiple-target search.
    Ort E; Fahrenfort JJ; Reeder R; Pollmann S; Olivers CNL
    Neuroimage; 2019 Nov; 202():116133. PubMed ID: 31472251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between ego- and allocentric neuronal representations of space.
    Neggers SF; Van der Lubbe RH; Ramsey NF; Postma A
    Neuroimage; 2006 May; 31(1):320-31. PubMed ID: 16473025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exogenous vs. endogenous attention: Shifting the balance of fronto-parietal activity.
    Meyer KN; Du F; Parks E; Hopfinger JB
    Neuropsychologia; 2018 Mar; 111():307-316. PubMed ID: 29425803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hierarchy of attentional priority signals in human frontoparietal cortex.
    Liu T; Hou Y
    J Neurosci; 2013 Oct; 33(42):16606-16. PubMed ID: 24133264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maintaining coherence of dynamic objects requires coordination of neural systems extended from anterior frontal to posterior parietal brain cortices.
    Imaruoka T; Saiki J; Miyauchi S
    Neuroimage; 2005 May; 26(1):277-84. PubMed ID: 15862228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bilateral dorsal fronto-parietal areas are associated with integration of visual motion information and timed motor action.
    de Azevedo Neto RM; Amaro Júnior E
    Behav Brain Res; 2018 Jan; 337():91-98. PubMed ID: 28964911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Processing of bilateral versus unilateral conditions: evidence for the functional contribution of the ventral attention network.
    Beume LA; Kaller CP; Hoeren M; Klöppel S; Kuemmerer D; Glauche V; Köstering L; Mader I; Rijntjes M; Weiller C; Umarova R
    Cortex; 2015 May; 66():91-102. PubMed ID: 25824980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.