These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 30457966)

  • 21. Vertical ground reaction forces in patients after calcaneal trauma surgery.
    van Hoeve S; Verbruggen J; Willems P; Meijer K; Poeze M
    Gait Posture; 2017 Oct; 58():523-526. PubMed ID: 28961549
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterizing the shoe-rung friction requirements during ladder climbing.
    Martin ER; Pliner EM; Beschorner KE
    J Biomech; 2020 Jan; 99():109507. PubMed ID: 31780121
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of age-related changes in step length and step width on the required coefficient of friction during straight walking.
    Yamaguchi T; Masani K
    Gait Posture; 2019 Mar; 69():195-201. PubMed ID: 30772623
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of different methods to extract the required coefficient of friction for level walking.
    Chang WR; Chang CC; Matz S
    Ergonomics; 2012; 55(3):308-15. PubMed ID: 22409168
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Audiovisual Processing is Abnormal in Parkinson's Disease and Correlates with Freezing of Gait and Disease Duration.
    Fearon C; Butler JS; Newman L; Lynch T; Reilly RB
    J Parkinsons Dis; 2015; 5(4):925-36. PubMed ID: 26485427
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of predicted kinetic variables between Parkinson's disease patients and healthy age-matched control using a depth sensor-driven full-body musculoskeletal model.
    Oh J; Eltoukhy M; Kuenze C; Andersen MS; Signorile JF
    Gait Posture; 2020 Feb; 76():151-156. PubMed ID: 31862662
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gait analysis in patients with Parkinson's disease off dopaminergic therapy.
    Svehlík M; Zwick EB; Steinwender G; Linhart WE; Schwingenschuh P; Katschnig P; Ott E; Enzinger C
    Arch Phys Med Rehabil; 2009 Nov; 90(11):1880-6. PubMed ID: 19887212
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Asymmetrical slip propensity: required coefficient of friction.
    Seo JS; Kim S
    J Neuroeng Rehabil; 2013 Jul; 10():84. PubMed ID: 23902896
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The clinical significance of freezing while turning in Parkinson's disease.
    Mancini M; Smulders K; Cohen RG; Horak FB; Giladi N; Nutt JG
    Neuroscience; 2017 Feb; 343():222-228. PubMed ID: 27956066
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of visual and auditory cues on gait initiation in people with Parkinson's disease.
    Jiang Y; Norman KE
    Clin Rehabil; 2006 Jan; 20(1):36-45. PubMed ID: 16502748
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amplitude Manipulation Evokes Upper Limb Freezing during Handwriting in Patients with Parkinson's Disease with Freezing of Gait.
    Heremans E; Nackaerts E; Vervoort G; Vercruysse S; Broeder S; Strouwen C; Swinnen SP; Nieuwboer A
    PLoS One; 2015; 10(11):e0142874. PubMed ID: 26580556
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Freezing of gait is associated with increased saccade latency and variability in Parkinson's disease.
    Nemanich ST; Earhart GM
    Clin Neurophysiol; 2016 Jun; 127(6):2394-401. PubMed ID: 27178858
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analyzing gait variability and dual-task interference in patients with Parkinson's disease and freezing by means of the word-color Stroop test.
    Kleiner AFR; Pagnussat AS; Prisco GD; Vagnini A; Stocchi F; De Pandis MF; Galli M
    Aging Clin Exp Res; 2018 Sep; 30(9):1137-1142. PubMed ID: 29198058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduced after-effects following podokinetic adaptation in people with Parkinson's disease and freezing of gait.
    Nemanich ST; Earhart GM
    Parkinsonism Relat Disord; 2016 Jan; 22():93-7. PubMed ID: 26639981
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficacy of cumulative high-frequency rTMS on freezing of gait in Parkinson's disease.
    Kim MS; Chang WH; Cho JW; Youn J; Kim YK; Kim SW; Kim YH
    Restor Neurol Neurosci; 2015; 33(4):521-30. PubMed ID: 26409410
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual-task interference during gait on irregular terrain in people with Parkinson's disease.
    Xu H; Merryweather A; Foreman KB; Zhao J; Hunt M
    Gait Posture; 2018 Jun; 63():17-22. PubMed ID: 29702370
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modelling the stochastic nature of the available coefficient of friction at footwear-floor interfaces.
    Gragg J; Klose E; Yang J
    Ergonomics; 2017 Jul; 60(7):977-984. PubMed ID: 27592564
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinematic and Kinetic Patterns Related to Free-Walking in Parkinson's Disease.
    Martínez M; Villagra F; Castellote JM; Pastor MA
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30513798
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of Freezing of Gait in Patients with Parkinson's Disease Using EEG Signals.
    Handojoseno AMA; Naik GR; Gilat M; Shine JM; Nguyen TN; Ly QT; Lewis SJG; Nguyen HT
    Stud Health Technol Inform; 2018; 246():124-131. PubMed ID: 29507265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.