BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 30457977)

  • 1. Compositional control of homogeneous InGaN nanowires with the In content up to 90.
    Zeghouane M; Avit G; André Y; Bougerol C; Robin Y; Ferret P; Castelluci D; Gil E; Dubrovskii VG; Amano H; Trassoudaine A
    Nanotechnology; 2019 Jan; 30(4):044001. PubMed ID: 30457977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circumventing the miscibility gap in InGaN nanowires emitting from blue to red.
    Roche E; André Y; Avit G; Bougerol C; Castelluci D; Réveret F; Gil E; Médard F; Leymarie J; Jean T; Dubrovskii VG; Trassoudaine A
    Nanotechnology; 2018 Nov; 29(46):465602. PubMed ID: 30160245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultralong and defect-free GaN nanowires grown by the HVPE process.
    Avit G; Lekhal K; André Y; Bougerol C; Réveret F; Leymarie J; Gil E; Monier G; Castelluci D; Trassoudaine A
    Nano Lett; 2014 Feb; 14(2):559-62. PubMed ID: 24393103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epitaxial growth of InGaN nanowire arrays for light emitting diodes.
    Hahn C; Zhang Z; Fu A; Wu CH; Hwang YJ; Gargas DJ; Yang P
    ACS Nano; 2011 May; 5(5):3970-6. PubMed ID: 21495684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive model toward optimization of SAG In-rich InGaN nanorods by hydride vapor phase epitaxy.
    Hijazi H; Zeghouane M; Jridi J; Gil E; Castelluci D; Dubrovskii VG; Bougerol C; André Y; Trassoudaine A
    Nanotechnology; 2021 Apr; 32(15):155601. PubMed ID: 33434893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy.
    Guo W; Zhang M; Banerjee A; Bhattacharya P
    Nano Lett; 2010 Sep; 10(9):3355-9. PubMed ID: 20701296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self catalytic growth of indium oxide (In2O3) nanowires by resistive thermal evaporation.
    Kumar RR; Rao KN; Rajanna K; Phani AR
    J Nanosci Nanotechnol; 2014 Jul; 14(7):5485-90. PubMed ID: 24758054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. InGaN nanowires with high InN molar fraction: growth, structural and optical properties.
    Zhang X; Lourenço-Martins H; Meuret S; Kociak M; Haas B; Rouvière JL; Jouneau PH; Bougerol C; Auzelle T; Jalabert D; Biquard X; Gayral B; Daudin B
    Nanotechnology; 2016 May; 27(19):195704. PubMed ID: 27041669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particle-assisted Ga(x)In(1-x)P nanowire growth for designed bandgap structures.
    Jacobsson D; Persson JM; Kriegner D; Etzelstorfer T; Wallentin J; Wagner JB; Stangl J; Samuelson L; Deppert K; Borgström MT
    Nanotechnology; 2012 Jun; 23(24):245601. PubMed ID: 22641029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailoring the morphology and luminescence of GaN/InGaN core-shell nanowires using bottom-up selective-area epitaxy.
    Nami M; Eller RF; Okur S; Rishinaramangalam AK; Liu S; Brener I; Feezell DF
    Nanotechnology; 2017 Jan; 28(2):025202. PubMed ID: 27905321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of liquid indium in the structural purity of wurtzite InAs nanowires that grow on Si(111).
    Biermanns A; Dimakis E; Davydok A; Sasaki T; Geelhaar L; Takahasi M; Pietsch U
    Nano Lett; 2014 Dec; 14(12):6878-83. PubMed ID: 25400142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructure and strain in InGaN/GaN superlattices grown in GaN nanowires.
    Kehagias T; Dimitrakopulos GP; Becker P; Kioseoglou J; Furtmayr F; Koukoula T; Häusler I; Chernikov A; Chatterjee S; Karakostas T; Solowan HM; Schwarz UT; Eickhoff M; Komninou P
    Nanotechnology; 2013 Nov; 24(43):435702. PubMed ID: 24076624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long indium-rich InGaAs nanowires by SAG-HVPE.
    Chereau E; Grégoire G; Avit G; Taliercio T; Staudinger P; Schmid H; Bougerol C; Trassoudaine A; Gil E; LaPierre RR; André Y
    Nanotechnology; 2024 Feb; 35(19):. PubMed ID: 38316054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Si/InGaN core/shell hierarchical nanowire arrays and their photoelectrochemical properties.
    Hwang YJ; Wu CH; Hahn C; Jeong HE; Yang P
    Nano Lett; 2012 Mar; 12(3):1678-82. PubMed ID: 22369381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Band engineered epitaxial 3D GaN-InGaN core-shell rod arrays as an advanced photoanode for visible-light-driven water splitting.
    Caccamo L; Hartmann J; Fàbrega C; Estradé S; Lilienkamp G; Prades JD; Hoffmann MW; Ledig J; Wagner A; Wang X; Lopez-Conesa L; Peiró F; Rebled JM; Wehmann HH; Daum W; Shen H; Waag A
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2235-40. PubMed ID: 24517402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vapor liquid solid-hydride vapor phase epitaxy (VLS-HVPE) growth of ultra-long defect-free GaAs nanowires: ab initio simulations supporting center nucleation.
    André Y; Lekhal K; Hoggan P; Avit G; Cadiz F; Rowe A; Paget D; Petit E; Leroux C; Trassoudaine A; Ramdani MR; Monier G; Colas D; Ajib R; Castelluci D; Gil E
    J Chem Phys; 2014 May; 140(19):194706. PubMed ID: 24852556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. InAs(1-x)P(x) nanowires grown by catalyst-free molecular-beam epitaxy.
    Isakov I; Panfilova M; Sourribes MJ; Tileli V; Porter AE; Warburton PA
    Nanotechnology; 2013 Mar; 24(8):085707. PubMed ID: 23386103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dense, Regular GaAs Nanowire Arrays by Catalyst-Free Vapor Phase Epitaxy for Light Harvesting.
    Jin J; Stoica T; Trellenkamp S; Chen Y; Anttu N; Migunov V; Kawabata RM; Buenconsejo PJ; Lam YM; Haas F; Hardtdegen H; Grützmacher D; Kardynał BE
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22484-92. PubMed ID: 27504951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of vertical GaN/InGaN heterostructure nanowires using Ni-Au bi-metal catalysts.
    Ha R; Kim SW; Choi HJ
    Nanoscale Res Lett; 2013 Jun; 8(1):299. PubMed ID: 23803283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epitaxial Growth of GaN Core and InGaN/GaN Multiple Quantum Well Core/Shell Nanowires on a Thermally Conductive Beryllium Oxide Substrate.
    Johar MA; Waseem A; Hassan MA; Bagal IV; Abdullah A; Ha JS; Lee JK; Ryu SW
    ACS Omega; 2020 Jul; 5(28):17753-17760. PubMed ID: 32715262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.