These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30457977)

  • 41. InGaN/GaN nanowires as a new platform for photoelectrochemical sensors - detection of NADH.
    Riedel M; Hölzel S; Hille P; Schörmann J; Eickhoff M; Lisdat F
    Biosens Bioelectron; 2017 Aug; 94():298-304. PubMed ID: 28315593
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Growth of axial SiGe heterostructures in nanowires using pulsed laser deposition.
    Eisenhawer B; Sivakov V; Berger A; Christiansen S
    Nanotechnology; 2011 Jul; 22(30):305604. PubMed ID: 21705828
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Substitutional synthesis of sub-nanometer InGaN/GaN quantum wells with high indium content.
    Vasileiadis IG; Lymperakis L; Adikimenakis A; Gkotinakos A; Devulapalli V; Liebscher CH; Androulidaki M; Hübner R; Karakostas T; Georgakilas A; Komninou P; Dimakis E; Dimitrakopulos GP
    Sci Rep; 2021 Oct; 11(1):20606. PubMed ID: 34663895
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Catalyst-assisted hydride vapor phase epitaxy of GaN nanowires: exceptional length and constant rod-like shape capability.
    Lekhal K; Avit G; André Y; Trassoudaine A; Gil E; Varenne C; Bougerol C; Monier G; Castelluci D
    Nanotechnology; 2012 Oct; 23(40):405601. PubMed ID: 22983695
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Growth of gallium nitride and indium nitride nanowires on conductive and flexible carbon cloth substrates.
    Yang Y; Ling Y; Wang G; Lu X; Tong Y; Li Y
    Nanoscale; 2013 Mar; 5(5):1820-4. PubMed ID: 23376979
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High thermal stability of high indium content InGaN films grown by pulsed laser deposition.
    Shen KC; Wang TY; Wuu DS; Horng RH
    Opt Express; 2012 Sep; 20(19):21173-80. PubMed ID: 23037241
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of twinning on the photoluminescence and photoelectrochemical properties of indium phosphide nanowires grown on silicon (111).
    Woo RL; Xiao R; Kobayashi Y; Gao L; Goel N; Hudait MK; Mallouk TE; Hicks RF
    Nano Lett; 2008 Dec; 8(12):4664-9. PubMed ID: 19367937
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Crystallinity, Surface Morphology, and Photoelectrochemical Effects in Conical InP and InN Nanowires Grown on Silicon.
    Parameshwaran V; Xu X; Clemens B
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21454-64. PubMed ID: 27455379
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular beam epitaxial growth and characterization of catalyst-free InN/InxGa1-xN core/shell nanowire heterostructures on Si(111) substrates.
    Cui K; Fathololoumi S; Golam Kibria M; Botton GA; Mi Z
    Nanotechnology; 2012 Mar; 23(8):085205. PubMed ID: 22293649
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Monodisperse (In, Ga)N insertions in catalyst-free-grown GaN(0001) nanowires.
    Knelangen M; Hanke M; Luna E; Schrottke L; Brandt O; Trampert A
    Nanotechnology; 2011 Sep; 22(36):365703. PubMed ID: 21836335
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dislocation-free axial InAs-on-GaAs nanowires on silicon.
    Beznasyuk DV; Robin E; Hertog MD; Claudon J; Hocevar M
    Nanotechnology; 2017 Sep; 28(36):365602. PubMed ID: 28671871
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phase Selection in Self-catalyzed GaAs Nanowires.
    Panciera F; Baraissov Z; Patriarche G; Dubrovskii VG; Glas F; Travers L; Mirsaidov U; Harmand JC
    Nano Lett; 2020 Mar; 20(3):1669-1675. PubMed ID: 32027145
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Origin of the spectral red-shift and polarization patterns of self-assembled InGaN nanostructures on GaN nanowires.
    Ries M; Nippert F; März B; Alonso-Orts M; Grieb T; Hötzel R; Hille P; Emtenani P; Akinoglu EM; Speiser E; Plaickner J; Schörmann J; Auf der Maur M; Müller-Caspary K; Rosenauer A; Esser N; Eickhoff M; Wagner MR
    Nanoscale; 2023 Apr; 15(15):7077-7085. PubMed ID: 36987591
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Wurtzite-zincblende superlattices in InAs nanowires using a supply interruption method.
    Bolinsson J; Caroff P; Mandl B; Dick KA
    Nanotechnology; 2011 Jul; 22(26):265606. PubMed ID: 21576775
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multicolour luminescence from InGaN quantum wells grown over GaN nanowire arrays by molecular-beam epitaxy.
    Armitage R; Tsubaki K
    Nanotechnology; 2010 May; 21(19):195202. PubMed ID: 20400823
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Foreign-catalyst-free growth of InAs/InSb axial heterostructure nanowires on Si (111) by molecular-beam epitaxy.
    So H; Pan D; Li L; Zhao J
    Nanotechnology; 2017 Mar; 28(13):135704. PubMed ID: 28256450
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interplay of strain and indium incorporation in InGaN/GaN dot-in-a-wire nanostructures by scanning transmission electron microscopy.
    Woo SY; Gauquelin N; Nguyen HP; Mi Z; Botton GA
    Nanotechnology; 2015 Aug; 26(34):344002. PubMed ID: 26234582
    [TBL] [Abstract][Full Text] [Related]  

  • 58. InGaN nanopillars grown on silicon substrate using plasma assisted molecular beam epitaxy.
    Vajpeyi AP; Ajagunna AO; Tsagaraki K; Androulidaki M; Georgakilas A
    Nanotechnology; 2009 Aug; 20(32):325605. PubMed ID: 19620761
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The nature of catalyst particles and growth mechanisms of GaN nanowires grown by Ni-assisted metal-organic chemical vapor deposition.
    Weng X; Burke RA; Redwing JM
    Nanotechnology; 2009 Feb; 20(8):085610. PubMed ID: 19417458
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Alignment control and atomically-scaled heteroepitaxial interface study of GaN nanowires.
    Liu Q; Liu B; Yang W; Yang B; Zhang X; Labbé C; Portier X; An V; Jiang X
    Nanoscale; 2017 Apr; 9(16):5212-5221. PubMed ID: 28397937
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.