These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 30458109)

  • 1. Phosphate Lock Residues of Acidothermus cellulolyticus Cas9 Are Critical to Its Substrate Specificity.
    Hand TH; Das A; Roth MO; Smith CL; Jean-Baptiste UL; Li H
    ACS Synth Biol; 2018 Dec; 7(12):2908-2917. PubMed ID: 30458109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The molecular basis for recognition of 5'-NNNCC-3' PAM and its methylation state by Acidothermus cellulolyticus Cas9.
    Das A; Hand TH; Smith CL; Wickline E; Zawrotny M; Li H
    Nat Commun; 2020 Dec; 11(1):6346. PubMed ID: 33311465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed evolution studies of a thermophilic Type II-C Cas9.
    Hand TH; Das A; Li H
    Methods Enzymol; 2019; 616():265-288. PubMed ID: 30691646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs.
    Lee HJ; Kim HJ; Lee SJ
    Genome Res; 2020 May; 30(5):768-775. PubMed ID: 32327447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytically Enhanced Cas9 through Directed Protein Evolution.
    Hand TH; Roth MO; Smith CL; Shiel E; Klein KN; Gilbert DM; Li H
    CRISPR J; 2021 Apr; 4(2):223-232. PubMed ID: 33876948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Impact of DNA Topology and Guide Length on Target Selection by a Cytosine-Specific Cas9.
    Tsui TKM; Hand TH; Duboy EC; Li H
    ACS Synth Biol; 2017 Jun; 6(6):1103-1113. PubMed ID: 28277645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bridge Helix of Cas9 Modulates Target DNA Cleavage and Mismatch Tolerance.
    Babu K; Amrani N; Jiang W; Yogesha SD; Nguyen R; Qin PZ; Rajan R
    Biochemistry; 2019 Apr; 58(14):1905-1917. PubMed ID: 30916546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease.
    Chen W; Zhang H; Zhang Y; Wang Y; Gan J; Ji Q
    PLoS Biol; 2019 Oct; 17(10):e3000496. PubMed ID: 31603896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SMOOT libraries and phage-induced directed evolution of Cas9 to engineer reduced off-target activity.
    Cerchione D; Loveluck K; Tillotson EL; Harbinski F; DaSilva J; Kelley CP; Keston-Smith E; Fernandez CA; Myer VE; Jayaram H; Steinberg BE
    PLoS One; 2020; 15(4):e0231716. PubMed ID: 32298334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for mismatch surveillance by CRISPR-Cas9.
    Bravo JPK; Liu MS; Hibshman GN; Dangerfield TL; Jung K; McCool RS; Johnson KA; Taylor DW
    Nature; 2022 Mar; 603(7900):343-347. PubMed ID: 35236982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decrypting the mechanistic basis of CRISPR/Cas9 protein.
    Panda G; Ray A
    Prog Biophys Mol Biol; 2022 Aug; 172():60-76. PubMed ID: 35577099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The initiation, propagation and dynamics of CRISPR-SpyCas9 R-loop complex.
    Zeng Y; Cui Y; Zhang Y; Zhang Y; Liang M; Chen H; Lan J; Song G; Lou J
    Nucleic Acids Res; 2018 Jan; 46(1):350-361. PubMed ID: 29145633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9 can mediate high-efficiency off-target mutations in mice in vivo.
    Aryal NK; Wasylishen AR; Lozano G
    Cell Death Dis; 2018 Oct; 9(11):1099. PubMed ID: 30368519
    [No Abstract]   [Full Text] [Related]  

  • 14. Directed evolution of CRISPR-Cas9 to increase its specificity.
    Lee JK; Jeong E; Lee J; Jung M; Shin E; Kim YH; Lee K; Jung I; Kim D; Kim S; Kim JS
    Nat Commun; 2018 Aug; 9(1):3048. PubMed ID: 30082838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phage AcrIIA2 DNA Mimicry: Structural Basis of the CRISPR and Anti-CRISPR Arms Race.
    Liu L; Yin M; Wang M; Wang Y
    Mol Cell; 2019 Feb; 73(3):611-620.e3. PubMed ID: 30606466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA-dependent RNA targeting by CRISPR-Cas9.
    Strutt SC; Torrez RM; Kaya E; Negrete OA; Doudna JA
    Elife; 2018 Jan; 7():. PubMed ID: 29303478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leveraging QM/MM and Molecular Dynamics Simulations to Decipher the Reaction Mechanism of the Cas9 HNH Domain to Investigate Off-Target Effects.
    Maghsoud Y; Jayasinghe-Arachchige VM; Kumari P; Cisneros GA; Liu J
    J Chem Inf Model; 2023 Nov; 63(21):6834-6850. PubMed ID: 37877218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterologous Expression and Purification of a CRISPR-Cas9-Based Adenine Base Editor.
    Lee SN; Jang HS; Woo JS
    Methods Mol Biol; 2023; 2606():123-133. PubMed ID: 36592312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cas9 deactivation with photocleavable guide RNAs.
    Zou RS; Liu Y; Wu B; Ha T
    Mol Cell; 2021 Apr; 81(7):1553-1565.e8. PubMed ID: 33662274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [CRISPR/CAS9, the King of Genome Editing Tools].
    Bannikov AV; Lavrov AV
    Mol Biol (Mosk); 2017; 51(4):582-594. PubMed ID: 28900076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.