BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30458174)

  • 1. Apatite nanoparticles mediate intracellular delivery of trehalose and increase survival of cryopreserved cells.
    Wang B; Liu G; Balamurugan V; Sui Y; Wang G; Song Y; Chang Q
    Cryobiology; 2019 Feb; 86():103-110. PubMed ID: 30458174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Apatite nanoparticles strongly improve red blood cell cryopreservation by mediating trehalose delivery via enhanced membrane permeation.
    Stefanic M; Ward K; Tawfik H; Seemann R; Baulin V; Guo Y; Fleury JB; Drouet C
    Biomaterials; 2017 Sep; 140():138-149. PubMed ID: 28649014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoparticle-mediated intracellular delivery enables cryopreservation of human adipose-derived stem cells using trehalose as the sole cryoprotectant.
    Rao W; Huang H; Wang H; Zhao S; Dumbleton J; Zhao G; He X
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):5017-28. PubMed ID: 25679454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Me
    Bumbat M; Wang M; Liang W; Ye P; Sun W; Liu B
    Biopreserv Biobank; 2020 Feb; 18(1):33-40. PubMed ID: 31800305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trehalose effectiveness as a cryoprotectant in 2D and 3D cell cultures of human embryonic kidney cells.
    Hara J; Tottori J; Anders M; Dadhwal S; Asuri P; Mobed-Miremadi M
    Artif Cells Nanomed Biotechnol; 2017 May; 45(3):609-616. PubMed ID: 27050441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trehalose glycopolymers for cryopreservation of tissue-engineered constructs.
    Wang J; Shi X; Xiong M; Tan WS; Cai H
    Cryobiology; 2022 Feb; 104():47-55. PubMed ID: 34800528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased cryosurvival of osteosarcoma cells using an amphipathic pH-responsive polymer for trehalose uptake.
    Mercado SA; Slater NK
    Cryobiology; 2016 Oct; 73(2):175-80. PubMed ID: 27497662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining endocytic and freezing-induced trehalose uptake for cryopreservation of mammalian cells.
    Zhang M; Oldenhof H; Sieme H; Wolkers WF
    Biotechnol Prog; 2017 Jan; 33(1):229-235. PubMed ID: 27802564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of intracellular and extracellular trehalose as a cryoprotectant of stem cells obtained from umbilical cord blood.
    Motta JP; Paraguassú-Braga FH; Bouzas LF; Porto LC
    Cryobiology; 2014 Jun; 68(3):343-8. PubMed ID: 24769312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amphipathic polymer-mediated uptake of trehalose for dimethyl sulfoxide-free human cell cryopreservation.
    Sharp DM; Picken A; Morris TJ; Hewitt CJ; Coopman K; Slater NK
    Cryobiology; 2013 Dec; 67(3):305-11. PubMed ID: 24045066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cryoprotectant trehalose could inhibit ERS-induced apoptosis by activating autophagy in cryoprotected rat valves.
    Wu H; Chang Q
    PLoS One; 2018; 13(3):e0194078. PubMed ID: 29522567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular sugars improve survival of human red blood cells cryopreserved at -80 degrees C in the presence of polyvinyl pyrrolidone and human serum albumin.
    Quan G; Zhang L; Guo Y; Liu M; Wang J; Wang Y; Dong B; Liu A; Zhang J; Han Y
    Cryo Letters; 2007; 28(2):95-108. PubMed ID: 17522728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of cryoprotective media on cryopreservation of cells using loading trehalose.
    Jong KS; Hui YL; Yu CM; Ki SY; Kim SH; Pak HH
    Cryobiology; 2020 Feb; 92():258-259. PubMed ID: 31730757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of trehalose as an additive to dimethyl sulfoxide solutions on ice formation, cellular viability, and metabolism.
    Solocinski J; Osgood Q; Wang M; Connolly A; Menze MA; Chakraborty N
    Cryobiology; 2017 Apr; 75():134-143. PubMed ID: 28063960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryopreservation of hMSCs seeded silk nanofibers based tissue engineered constructs.
    Bissoyi A; Pramanik K; Panda NN; Sarangi SK
    Cryobiology; 2014 Jun; 68(3):332-42. PubMed ID: 24759299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protective effects of osmolytes in cryopreserving adherent neuroblastoma (Neuro-2a) cells.
    Bailey TL; Wang M; Solocinski J; Nathan BP; Chakraborty N; Menze MA
    Cryobiology; 2015 Dec; 71(3):472-80. PubMed ID: 26408850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cold-Responsive Nanoparticle Enables Intracellular Delivery and Rapid Release of Trehalose for Organic-Solvent-Free Cryopreservation.
    Zhang Y; Wang H; Stewart S; Jiang B; Ou W; Zhao G; He X
    Nano Lett; 2019 Dec; 19(12):9051-9061. PubMed ID: 31680526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic effects of liposomes, trehalose, and hydroxyethyl starch for cryopreservation of human erythrocytes.
    Stoll C; Holovati JL; Acker JP; Wolkers WF
    Biotechnol Prog; 2012; 28(2):364-71. PubMed ID: 22275294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular trehalose via transporter TRET1 as a method to cryoprotect CHO-K1 cells.
    Uchida T; Furukawa M; Kikawada T; Yamazaki K; Gohara K
    Cryobiology; 2017 Aug; 77():50-57. PubMed ID: 28552273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sugar pretreatment as a new approach to the Me2SO- and xeno-free cryopreservation of human mesenchymal stromal cells.
    Petrenko YA; Rogulska OY; Mutsenko VV; Petrenko AY
    Cryo Letters; 2014; 35(3):239-46. PubMed ID: 24997842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.